
TWS Graphical User Interface Toolkit
Reference Manual & Tutorial

for use with Metagraphics MetaWINDOW™

Release 4.1.1

Distributed by:
METAGRAPHICS SOFTWARE CORPORATION
PO Box 225
Woodinville, WA 98072

Phone: 425-844-1110
Fax: 425-844-1112
Web: http://www.metagraphics.com
Email: sales@metagraphics.com

support@metagraphics.com

Copyright © 1992-1999 TWS Software

TWS Software
2708 Espanola NE
Albuquerque, NM 87110

Web: http://www.metagraphics.com/tws/

Adobe Acrobat .pdf document portions
Copyright © 1999-2000 Metagraphics Software Corporation

Metagraphics Software Corporation
PO Box 225
Woodinville, WA 98072

Web: http://www.metagraphics.com/
Email: sales@metagraphics.com

support@metagraphics.com

The TWS Window System Reference and Tutorial Release 4.1.1

1 Introduction to the TWS Window System

CONTENTS

CONTENTSCONTENTS 1

1. INTRODUCTION TO THE TWS WINDOW SYSTEM 13

1.1. LEGAL STUFF 13
1.1.1. Copyrights 13
1.1.2. Warranty 13
1.1.3. Software License Agreement 13
1.1.4. Trademarks 14

1.2. FILES IN THE DISTRIBUTION 14
1.3. LINKING THE TWS LIBRARY WITH APPLICATION CODE 16

2. SYSTEM OVERVIEW 20

2.1. SCREEN DISPLAY ORGANIZATION 20
2.2. SYSTEM REQUIREMENTS 21
2.3. SYSTEM DESIGN 21

2.3.1. Windows 22
2.3.2. The Window Stack 22
2.3.3. Save-unders and Backing Store 22
2.3.4. Gadgets 22
2.3.5. Event Processing 22
2.3.6. Window Coordinate System 22
2.3.7. Graphics 22
2.3.8. Background Processing 23
2.3.9. Callback Functions 23

3. THE TWS WINDOW SYSTEM 24

3.1. WINDOW TYPES 24
3.1.1. Document-Type 24
3.1.2. Dialog-Type 24
3.1.3. Simple-Type 24
3.1.4. Window Attributes 24

3.1.4.1. SCROLLATTRIB 25
3.1.4.2. BACKING 25
3.1.4.3. ICONONLY 25
3.1.4.4. ICONINIT 25

3.2. WINDOW SCROLLBARS 26
3.3. USING SCROLLBARS 26

3.3.1. Window Scrollbars and Resizing 27
3.3.2. Window Scrollbar Callback Procedures 27

3.4. WINDOW MANAGEMENT EVENTS 28
3.4.1. Window Management Callback Procedures 28
3.4.2. Setting a Window Event Callback 29

3.5. CONFIGURATION FILE 29
3.5.1. Configuration File Format 29

3.6. WINDOWS 31
3.7. INCLUDE FILE: SMWINDOW.H 31
3.8. INTERFACE FUNCTIONS SMWINDOW.H 33

3.8.1. Initialization Functions 33
3.8.1.1. int SM_CloseAllWindows() 33
3.8.1.2. int SM_CloseWindow(WindowType *w) 33
3.8.1.3. int SM_Exit(WindowType *w) 33
3.8.1.4. int SM_Init(int graphdevice, int mousedevice) 33
3.8.1.5. int SM_LoadSystemFont(char *fontname) 33

The TWS Window System Reference and Tutorial Release 4.1.1

2 Introduction to the TWS Window System

3.8.1.6. WindowType *SM_NewWindow(RectType *s, char *t, int ty, MenuType *m, void *d) 33
3.8.1.7. int SM_OpenApplication(char *t, MenuType *m) 34
3.8.1.8. int SM_OpenWindow(WindowType *w) 34
3.8.1.9. int SM_ReadConfig(void) 34
3.8.1.10. void SM_UnmapWindow(WindowType *w) 34

3.8.2. Window Attribute Functions 36
3.8.2.1. int SM_GetColorScheme() Obsolete 36
3.8.2.2. ColorType *SM_GetContentColor(WindowType *w) (Macro) 36
3.8.2.3. int SM_GetContentDepth(WindowType *w) (Macro) 36
3.8.2.4. RectType *SM_GetContentRect(WindowType *w) (Macro) 36
3.8.2.5. int SM_GetContentWidth(WindowType *w) (Macro) 36
3.8.2.6. int SM_GetDefaultBevelDepth() 36
3.8.2.7. int SM_GetDefaultBorderWidth() 36
3.8.2.8. int SM_GetDefaultMenubarDepth() 36
3.8.2.9. ColorType *SM_GetDefaultTextColor() 36
3.8.2.10. int SM_GetDefaultTitlebarDepth() 36
3.8.2.11. int SM_GetDisplayDepth() 36
3.8.2.12. int SM_GetDisplayWidth() 36
3.8.2.13. GadgetType *SM_GetGadgets(WindowType *w) (Macro) 37
3.8.2.14. GraphStateType *SM_GetGraphState(WindowType *w) (Macro) 37
3.8.2.15. FontType *SM_GetSystemFont() 37
3.8.2.16. int SM_GetSystemFontDescent() 37
3.8.2.17. int SM_GetSystemFontHeight() 37
3.8.2.18. ColorType *SM_GetTextColor() 37
3.8.2.19. FontType *SM_GetTextFont() 37
3.8.2.20. FontType *SM_GetTextFontHeight() 37
3.8.2.21. int SM_GetTitleFontHeight() 37
3.8.2.22. void *SM_GetUserData(WindowType *w) (Macro) 37
3.8.2.23. int SM_GetWindowDepth(WindowType *w) (Macro) 37
3.8.2.24. void SM_GetWindowOffsets(WindowType *w, int *hoffs, int *voffs) 38
3.8.2.25. int SM_GetWindowWidth(WindowType *w) (Macro) 38
3.8.2.26. char *SM_GetWindowTitle(WindowType *) 38
3.8.2.27. int SM_SetApplicationMenu(MenuType *m) 38
3.8.2.28. void SM_SetApplicationTitle(char *title) 38
3.8.2.29. void SM_SetCloseProc(WindowType *w, int (*proc)()) (Macro) 38
3.8.2.30. int SM_SetContentColor(WindowType *w, ColorType *c) 39
3.8.2.31. int SM_SetContentRect(WindowType *w, RectType *r) 39
3.8.2.32. void SM_SetDrawProc(WindowType *w, int (*proc)()) (Macro) 39
3.8.2.33. void SM_SetGadgets(WindowType *w, GadgetType *g) (Macro) 39
3.8.2.34. void SM_SetGainFocusProc(WindowType *w, int (*f)()) (Macro) 39
3.8.2.35. void SM_SetLoseFocusProc(WindowType *w, int (*f)()) (Macro) 39
3.8.2.36. int SM_SetMenu(WindowType *w, MenuType *m) 39
3.8.2.37. void SM_SetRedrawFlag(WindowType *w, int flag) (Macro) 39
3.8.2.38. int SM_SetRedrawProc(WindowType *w, int (*proc)()) (Macro) 39
3.8.2.39. int SM_SetResizeProc(WindowType *w, int (*proc)()) (Macro) 39
3.8.2.40. int SM_SetUserData(WindowType *w, void *d) (Macro) 40
3.8.2.41. int SM_SetWindow(WindowType *w) 40
3.8.2.42. int SM_SetWindowProc(WindowType *w, int (*f)()) (Macro) 40
3.8.2.43. int SM_SetWindowScrollProc(WindowType *w, int which, int (*f)()) 40
3.8.2.44. int SM_SetWindowTitle(WindowType *w, char *c) 40

3.8.3. Window Drawing Functions 41
3.8.3.1. int SM_DrawAppTitle() 41
3.8.3.2. int SM_DrawBorder(WindowType *w) 41
3.8.3.3. int SM_DrawWindow(WindowType *w) 41
3.8.3.4. int SM_EraseContent(WindowType *w) 41
3.8.3.5. int SM_MoveWindow(WindowType *w, int dx, int dy) 41
3.8.3.6. int SM_RedrawWindow(WindowType *w) 41
3.8.3.7. int SM_RefreshGadgets(WindowType *w) 41
3.8.3.8. int SM_ResizeWindow(WindowType *w, int dx, int dy) 41

3.8.4. Miscellaneous Functions 43
3.8.4.1. int SM_BringToFront(WindowType *w) 43
3.8.4.2. WindowType *SM_FocusWindow() 43

The TWS Window System Reference and Tutorial Release 4.1.1

3 Introduction to the TWS Window System

3.8.4.3. int SM_FreeWindow(WindowType *w) 43
3.8.4.4. int SM_IsFocus(WindowType *w) 43
3.8.4.5. int SM_IsMaximized(WindowType *w) (Macro) 43
3.8.4.6. int SM_IsMinimized(WindowType *w) (Macro) 43
3.8.4.7. int SM_LockWindow(WindowType *w) (Macro) 43
3.8.4.8. int SM_nDisplayBits() 43
3.8.4.9. int SM_nDisplayPlanes() 43
3.8.4.10. int SM_SaveContent(WindowType *w) 43
3.8.4.11. int SM_StringWidth(char *string, FontType *font, int style) 44
3.8.4.12. int SM_UnlockWindow(WindowType *w) (Macro) 44
3.8.4.13. int SM_WindowExists(WindowType *w) 44
3.8.4.14. int SM_WindowRegion(WindowType *w, int x, int y) 44
3.8.4.15. WindowType *SM_WorkspaceWindow() 45

3.9. WORKSPACE PANELS 46
3.9.1. PanelType *SM_CreatePanel(int size, int location) 47

4. THE TWS EVENT SYSTEM 48

4.1. DATA TYPES 48
4.2. GETTING EVENTS 49
4.3. TWS EVENT HANDLER 52
4.4. BACKGROUND PROCEDURES 55

4.4.1. Background Procedure Example 56
4.5. EVENT GRABS 59
4.6. PRINTSCREEN EVENT 59
4.7. INTERFACE FUNCTIONS SMEVENT.H 59

4.7.1. int SM_CallBackgroundProcs(WindowType *w, EventType *evnt) 59
4.7.2. int SM_GetEventButtons(EventType *event) 59
4.7.3. void SM_GetEventCursor(EventType *event, int *x, int *y) 60
4.7.4. void SM_GetEventKey(EventType *event, char *Ascii, char *scancode) 60
4.7.5. int SM_GetEventRegion(EventType *event) 60
4.7.6. int SM_GetEventState(EventType *event) 60
4.7.7. long SM_GetEventTime(EventType *event) 60
4.7.8. unsigned char SM_GetEventType(EventType *event) 60
4.7.9. int SM_GetEventWinevent(EventType *event) 60
4.7.10. int SM_GetMouse(WindowType *w, int *state, int *x, int *y) 60
4.7.11. EventType *SM_GetNextEvent(EventType *evnt) 60
4.7.12. long SM_GetSystemTime() 60
4.7.13. int SM_InitBackgroundProcedures() 61
4.7.14. int SM_ProcessEvent(EventType *evnt) 61
4.7.15. BackgroundProcIDType SM_RegisterBackgroundProcedure (WindowType *w,
BackgroundProcType f, EventFlagsType fl) 61
4.7.16. int SM_RemoveBackgroundProcedure(BackgroundProcIDType id) 61
4.7.17. int SM_TimeOfDay(long time, int *hr, int *min, int *sec) 61
4.7.18. void SM_SetPrintscreenProc(WindowType *w, RectType *r, char *fname, void (*f)()) 61

5. MENUS 62

5.1. DATA TYPES 62
5.2. MENU ACCELERATOR KEYS 63
5.3. INTERFACE FUNCTIONS SMMENU.H 63

5.3.1. MenuType *SM_AddMenuItem(MenuType *m, int type, char *s, int (*f)(), MenuType *sub) 63
5.3.2. MenuType *SM_CreateMenu() 64
5.3.3. int SM_DestroyMenu(MenuType *m) 64
5.3.4. int SM_GetMenuActive(MenuType *m) 64
5.3.5. char *SM_GetMenuLabel(MenuType *m) 64
5.3.6. void SM_SetMenuActive(MenuType *m) 64
5.3.7. void SM_SetMenuInactive(MenuType *m) 64
5.3.8. int SM_SetMenuLabel(MenuType *m, char *label) 64

The TWS Window System Reference and Tutorial Release 4.1.1

4 Introduction to the TWS Window System

5.3.9. int SM_SetMenuProc(MenuType *m, int (*f)()) 64
5.4. EXAMPLE 64

6. FONTS 66

6.1. HOW TWS USES FONTS 66
6.2. TWS FONT TABLE 66
6.3. MANAGING FONTS 67
6.4. INTERFACE FUNCTIONS [SMFONT.H] 67

6.4.1. char *SM_GetCurrentFont() 67
6.4.2. int SM_GetCurrentFontDescent() 67
6.4.3. int SM_GetCurrentFontHeight() 67
6.4.4. void *SM_GetFontBuf(char *font) 67
6.4.5. int SM_GetFontHeight(char *font) 68
6.4.6. char *SM_GetGadgetFont(void *gadget) 68
6.4.7. char *SM_GetIconFont() 68
6.4.8. char *SM_GetSystemFont() 68
6.4.9. int SM_GetSystemFontDescent() 68
6.4.10. int SM_GetSystemFontHeight() 68
6.4.11. char *SM_GetTitleFont() 68
6.4.12. int SM_GetTitleFontHeight() 68
6.4.13. void SM_SetGadgetFont(void *gadget, char *fontname) 68
6.4.14. void SM_SetGadgetFontSize(void *gadget, int width, int height) 68
6.4.15. int SM_SetIconFont(char *fontname) 69
6.4.16. int SM_SetSystemFont(char *fontname) 69
6.4.17. int SM_SetTitleFont(char *fontname) 69
6.4.18. int SM_SetFont(char *font) 69

7. CURSORS 70

7.1. DATA TYPES 70
7.2. SETTING APPLICATION CURSORS 70
7.3. CHANGING THE SYSTEM CURSORS 71
7.4. INTERFACE FUNCTIONS [CURSOR.H] 71

7.4.1. int SM_GetCurrentCursor(void) 71
7.4.2. int SM_SetCursor(int cursornum) 71
7.4.3. int SM_DefineCursor(int cursornum, CursorType *cursor) 71

EXAMPLE 71

8. MESSAGING 74

8.1. DATA TYPES 74
8.2. INTERFACE FUNCTIONS SMMESSAG.H 75

8.2.1. int SM_GetMessage(MessageType t, MessagePacketType *msg) 75
8.2.2. int SM_GetMessageFor(SenderType t, MessagePacketType *msg) 75
8.2.3. UserDataType SM_GetMessageData(MessagePacketType *msg) 75
8.2.4. SenderType SM_GetMessageDestination(MessagePacketType *msg) 75
8.2.5. SenderType SM_GetMessageSender(MessagePacketType *msg) 75
8.2.6. MessageType SM_GetMessageType(MessagePacketType *msg) 75
8.2.7. int SM_InitMessage(void) 75
8.2.8. int SM_PostMessage(MessageType t, SenderType from, SenderType to, UserDataType data) 75

8.3. EXAMPLE 75

9. ICONS 77

9.1. CREATING A WINDOW ICON 77
9.2. ICONS AND CLOSING WINDOWS 77
9.3. OPERATIONS ON ICONS 77
9.4. DATA TYPES 77
9.5. INTERFACE FUNCTIONS SMICON.H 78

The TWS Window System Reference and Tutorial Release 4.1.1

5 Introduction to the TWS Window System

9.5.1. IconType *SM_CreateIcon(WindowType *w, char *title, PixmapType *pm) 78
9.5.2. PixmapType *SM_GetIconPixmap(WindowType *w) 78
9.5.3. void SM_MoveIcon(WindowType *w, int dx, int dy) 78
9.5.4. void SM_SetIconPixmap(WindowType *w, PixmapType *pm) 78

10. GRAPHICS FUNCTIONS 80

10.1. THE GRAPHICS STATE 80
10.2. DATA TYPES 81
10.3. USING GRAPHICS 82

10.3.1. Graphics and Color 82
10.3.2. Images 82
10.3.3. Blocking 83

10.4. INTERFACE FUNCTIONS SMGRAPH.H 83
10.4.1. int GR_CharWidth(char *c) 83
10.4.2. int GR_ClearCanvas(WindowType *w) 83
10.4.3. int GR_CloseGraphState(WindowType *w) 83
10.4.4. GraphStateType *GR_CreateGraphState(WindowType *w, RectType *r, int border) 84
10.4.5. int GR_DrawArray(WindowType *w, int x, int y, int l, ColorType *a) 84
10.4.6. int GR_DrawCircle(WindowType *w, int x, int y, int r) 84
10.4.7. int GR_DrawFilledCircle(WindowType *w, int x, int y, int r) 85
10.4.8. int GR_DrawFilledPolygon(WindowType *w, int npts, int *pts) 85
10.4.9. int GR_DrawFilledRect(WindowType *w, RectType *r) 85
10.4.10. int GR_DrawLine(WindowType *w, int x1, int y1, int x2, int y2) 85
10.4.11. int GR_DrawPoint(WindowType *w, int x, int y) 85
10.4.12. int GR_DrawPolygon(WindowType *w, int npts, int *pts) 85
10.4.13. int GR_DrawRect(WindowType *w, RectType *r) 85
10.4.14. int GR_DrawSolidCircle(WindowType *w, int x, int y, int r) 85
10.4.15. int GR_DrawSolidPolygon(WindowType *w, int npts, int *pts) 85
10.4.16. int GR_DrawSolidRect(WindowType *w, RectType *r) 85
10.4.17. int GR_DrawString(WindowType *w, int x, int y, char *string) 85
10.4.18. ColorType *GR_GetBackgroundColor(WindowType *w) 85
10.4.19. int GR_GetCanvasDepth(WindowType *w) 86
10.4.20. RectType *GR_GetCanvasRect(WindowType *w) 86
10.4.21. int GR_GetCanvasWidth(WindowType *w) 86
10.4.22. int GR_GetCursor(WindowType *w, int *x, int *y) 86
10.4.23. int GR_GetDevicePoint(int x, int y, ColorType *c) 86
10.4.24. ColorType *GR_GetDrawColor(WindowType *w) 86
10.4.25. void GR_GetGraphicsLocator(WindowType *w, int *x, int *y) 86
10.4.26. int GR_GetImage(WindowType *w, RectType *rt, ImageType *twsimage) 86
10.4.27. int GR_GetMouse(WindowType *w, int *state, int *x, int *y) 86
10.4.28. ColorType *GR_GetPalette(WindowType *w) 87
10.4.29. int GR_GetPoint(WindowType *w, int *x, int *y, ColorType *color) 87
10.4.30. void GR_GetTextLocator(WindowType *w, int *x, int *y) 87
10.4.31. int GR_HideCursor() 87
10.4.32. unsigned long GR_ImageSize(RectType *rt) 87
10.4.33. int GR_InsetRect(RectType *r, int dx, int dy) 87
10.4.34. int GR_IsBlocked(void) 87
10.4.35. void GR_LimitMouse(RectType *r) 87
10.4.36. int GR_LineTo(WindowType *w, int x, int y) 87
10.4.37. int GR_MouseInCanvas(WindowType *w) 87
10.4.38. int GR_MoveTo(WindowType *w, int x, int y) 88
10.4.39. int GR_OffsetRect(RectType *r, int dx, int dy) 88
10.4.40. int GR_PointInRect(int x, int y, RectType *r) 88
10.4.41. int GR_ProtectCanvas(WindowType *w) 88
10.4.42. int GR_ProtectOff() 88
10.4.43. int GR_PutImage(WindowType *w, RectType *rt, ImageType *twsimage) 88

The TWS Window System Reference and Tutorial Release 4.1.1

6 Introduction to the TWS Window System

10.4.44. int GR_SetBackgroundColor(WindowType *w, ColorType *color) 88
10.4.45. int GR_SetBlocking(WindowType *w) 89
10.4.46. void GR_SetCanvasBorder(WindowType *w, int mode) 89
10.4.47. int GR_SetCanvasRect(WindowType *w, RectType *r) 89
10.4.48. int GR_SetDrawColor(WindowType *w, ColorType *color) 89
10.4.49. int GR_SetDrawMode(WindowType *w, int mode) 89
10.4.50. int GR_SetFont(FontType f) 90
10.4.51. void GR_SetLineStyle(WindowType *w, int style) 90
10.4.52. void GR_SetLineWidth(WindowType *w, int width) 90
10.4.53. void GR_SetPalette(WindowType *w, ColorType *p, int n) 90
10.4.54. int GR_SetRect(RectType *r, int x1, int y1, int x2, int y2) 90
10.4.55. int GR_SetTextMode(WindowType *w, int mode) 90
10.4.56. void GR_ShiftPolygon(int npts, int *pts, int dx, int dy) 90
10.4.57. void GR_ShiftRect(RectType *r, int dx, int dy) 91
10.4.58. int GR_ShowCursor() 91
10.4.59. int GR_StringWidth(char *s) 91
10.4.60. int GR_TextWidth(char *s, int start, int length) 91
10.4.61. int GR_UnlimitMouse() 91
10.4.62. void GR_UnsetBlocking(void) 91

11. COLORS 92

11.1. LOOK-UP TABLE COLOR SYSTEMS 92
11.2. HOW TWS MANAGES LUT COLORS 92

11.2.1. Organization of the System Color Table 92
11.2.2. Window Color Tables 93
11.2.3. Using Colors 93
11.2.4. Color Mappings, Sharing, and Merging 93
11.2.5. Data Types 95
11.2.6. Reserved Colors 96
11.2.7. Window Element Colors 96

11.3. INTERFACE FUNCTIONS SMCOLOR.H 97
11.3.1. int SM_ActivatePalette(WindowType *w) 97
11.3.2. ColorType *SM_CreateColor(int r, int g, int b) 97
11.3.3. ColorType *SM_CreateWindowPalette(WindowType *w, int n) 97
11.3.4. ColorType *SM_GetClosestColor(WindowType *, int r, int g, int b) 97
11.3.5. int SM_GetElementColorIndex(int element) 97
11.3.6. ColorType *SM_GetPalette(WindowType *w) 97
11.3.7. ColorType *SM_GetSystemColor(int n) 98
11.3.8. ColorType *SM_GetSystemPalette() 98
11.3.9. ColorType *SM_GetWindowColor(WindowType *w, int n) 98
11.3.10. void SM_InitColor(int r, int g, int b, ColorType *c) 98
11.3.11. int SM_IsColorEqual(ColorType *c1, ColorType *c2) 98
11.3.12. void SM_ModifySystemColor(int i, int r, int g, int b) 98
11.3.13. int SM_ModifyWindowColor(WindowType *w, int n, int r, int g, int b) 98
11.3.14. int SM_nApplicationColors() 98
11.3.15. int SM_nColorBits() 98
11.3.16. long int SM_nSystemColors() 98
11.3.17. int SM_nWindowColors(WindowType *w) 99
11.3.18. void SM_SetElementColor(int element, int constcolor) 99
11.3.19. int SM_SetWindowColor(WindowType *w, int n, int r, int g, int b, int flag) 99

11.4. TRUECOLOR COLOR SYSTEMS 99

12. GADGETS 102

12.1. THE GENERIC GADGET 102
12.2. MODIFYING GADGET ATTRIBUTES AND REDRAWING GADGETS 102
12.3. SPECIFIC GADGETS 103

The TWS Window System Reference and Tutorial Release 4.1.1

7 Introduction to the TWS Window System

12.4. GENERIC GADGET API FUNCTIONS [SMGADGET.H] 103
12.4.1. void SM_AdjustGadgetBound(void *g, int dx, int dy, int dwidth, int dheight) 103
12.4.2. int SM_AttachGadget(WindowType *w, GadgetType *gadget) 103
12.4.3. int SM_CloseGadgets(GadgetType *g) 103
12.4.4. SM_DestroyGadget(void *g) 103
12.4.5. WindowType *SM_GadgetToWindow(void *gadget) 104
12.4.6. GadgetType *SM_GetFocusGadget(WindowType *w) 105
12.4.7. RectType *SM_GetGadgetBound(void *g) 105
12.4.8. ColorType *SM_GetGadgetBackcolor(void *g) 105
12.4.9. ColorType *SM_GetGadgetForecolor(void *g) 105
12.4.10. int SM_GetGadgetMsg(void *g) 105
12.4.11. GadgetType *SM_GetGadgetSuperclass(void *) 105
12.4.12. int SM_GetGadgetType(GadgetType *g) 105
12.4.13. WindowType *SM_GetGadgetWindow(void *g) 106
12.4.14. void SM_SetFocusGadget(void *gadget) 106
12.4.15. void SM_SetGadgetBackcolor(void *g, ColorType *color) 106
12.4.16. int SM_SetGadgetDeleteproc(void *g, int (*f)()) 106
12.4.17. int SM_SetGadgetDrawproc(void *g, int (*f)()) 106
12.4.18. void SM_SetGadgetFont(void *g, char *font) 106
12.4.19. void SM_SetGadgetFontFacing(void *g, int facing) 106
12.4.20. void SM_SetGadgetFontSize(void *g, int size) 106
12.4.21. void SM_SetGadgetForecolor(void *g, ColorType *color) 106
12.4.22. int SM_SetGadgetMsg(void *g, int evntmask) 107
12.4.23. void SM_SetGadgetRedrawFlag(void *g, int flag) 107
12.4.24. int SM_SetGadgetUserproc(void *g, int (*f)()) 107

13. LABEL 108

13.1. DATA TYPES 108
13.2. INTERFACE FUNCTIONS SMLABEL.H 109

13.2.1. LabelType *SM_CreateLabel(WindowType *w, RectType *r, char *str, int (*graphproc)(), int
align, int boldflg, int italflg, int boxflg, void *data) 109
13.2.2. void SM_DestroyLabel(LabelType *label) 109
13.2.3. int SM_EraseLabel(LabelType *label) 109
13.2.4. int SM_GetLabelBoldflag(LabelType *label) 110
13.2.5. int SM_GetLabelBoxflag(LabelType *label) (macro) 110
void SM_GetLabelBound(LabelType *label, RectType *r) 110
13.2.6. void *SM_GetLabelData(LabelType *label) (macro) 110
FontType SM_GetLabelFont(LabelType *label) (macro) 110
13.2.7. int SM_GetLabelItalflag(LabelType *label) 110
GadgetType *SM_GetLabelGadget(LabelType *label) (macro) 110
13.2.8. char *SM_GetLabelString(LabelType *label) (macro) 110
13.2.9. int SM_SetLabelBoxflag(LabelType *label, int flag) 110
13.2.10. int SM_SetLabelBoldflag(LabelType *label, int flag) 110
13.2.11. void SM_SetLabelData(LabelType *label, void *data) (macro) 110
void SM_SetLabelFont(LabelType *label, FontType font) 110
13.2.12. void SM_SetLabelGraphproc(LabelType *label, int (*f)()) 110
13.2.13. int SM_SetLabelItalflag(LabelType *label, int flag) 110
void SM_SetLabelBound(LabelType *label, RectType *r) 110
13.2.14. void SM_SetLabelSculptType(LabelType *label, int type) 111
13.2.15. int SM_SetLabelString(LabelType *label, char *string) 111

14. BUTTONS 112

14.1. DATA TYPES 112
14.2. BUTTON CALLBACK FUNCTION 113
14.3. DEFAULT BUTTON 113
14.4. BUTTON COLORS 113

The TWS Window System Reference and Tutorial Release 4.1.1

8 Introduction to the TWS Window System

14.4.1. Transparent Buttons 113
PIXMAPS IN BUTTONS 114
USER GRAPHICS IN BUTTONS 114
14.5. ACTIVE AND INACTIVE BUTTONS 115
BUTTON REPEAT 115
14.6. INTERFACE FUNCTIONS PROTOTYPES IN SMBUTTON.H 115

14.6.1. SM_ActivateButton(ButtonType *b) 115
14.6.2. ButtonType *SM_CreateButton(WindowType *w, RectType *r, char *label, void *data, int
(*action)()) 115
14.6.3. int SM_DeactivateButton(ButtonType *b) 115
14.6.4. int SM_DestroyButton(ButtonType *b) 115
14.6.5. int SM_GetButtonActive(ButtonType *b) (macro) 115
14.6.6. ColorType *SM_GetButtonColor(ButtonType *b) (macro) 115
14.6.7. void *SM_GetButtonData(ButtonType *b) (macro) 116
14.6.8. int SM_GetButtonIsdefault(ButtonType *b) (macro) 116
14.6.9. char *SM_GetButtonLabel(ButtonType *b) (macro) 116
14.6.10. ColorType *SM_GetButtonLabelcolor(ButtonType *b) (macro) 116
14.6.11. ColorType *SM_GetButtonPcolor(ButtonType *b) (macro) 116
14.6.12. PixmapType *SM_GetButtonPixmap(ButtonType *b) (macro) 116
14.6.13. ColorType *SM_GetButtonPlabelcolor(ButtonType *b) (macro) 116
14.6.14. int SM_SetButtonActive(ButtonType *b, int a) 116
14.6.15. int SM_SetButtonAlign(ButtonType *b, int alignment) 116
14.6.16. int SM_SetButtonColor(ButtonType *b, ColorType *color) 116
14.6.17. int SM_SetButtonData(ButtonType *b, void *data) (macro) 116
14.6.18. void SM_SetButtonGraphproc(ButtonType *b, int (*proc)()) (macro) 116
14.6.19. int SM_SetButtonIsdefault(ButtonType *b, int d) 116
14.6.20. int SM_SetButtonLabel(ButtonType *b, char *label) 116
14.6.21. ColorType *SM_SetButtonLabelcolor(ButtonType *b, ColorType *c) 117
14.6.22. void SM_SetButtonPixmap(ButtonType *b, PixmapType *pmap, int x, int y) 117
14.6.23. int SM_SetButtonProc(ButtonType *b, int (*action)()) (macro) 117
14.6.24. ColorType *SM_SetButtonPushedColor(ButtonType *b, ColorType *c) 117
14.6.25. ColorType *SM_SetButtonPushedLabelColor(ButtonType *b, ColorType *c) 117
14.6.26. int SM_SetButtonRect(ButtonType *b, RectType *r) 117
void SM_SetButtonRepeat(ButtonType *b, int flag) (macro) 117

14.7. EXAMPLES 117

15. CHECKBOX 118

15.1. DATA TYPES 118
15.2. CHECKBOX CALLBACK PROCEDURE 119
15.3. INTERFACE FUNCTIONS SMCHKBX.H 119

15.3.1. CheckboxType *SM_CreateCheckbox(WindowType *w, RectType *bound, char *label, int
buttonpos, int state, void *data, int (*f)()) 119
15.3.2. int SM_DestroyCheckbox(CheckboxType *c) 119
15.3.3. void *SM_GetCheckboxData(CheckboxType *c) (macro) 119
15.3.4. char *SM_GetCheckboxLabel(CheckboxType *c) (macro) 119
15.3.5. int SM_GetCheckboxState(CheckboxType *c) (macro) 119
15.3.6. int SM_GetCheckboxType(CheckboxType *c) (macro) 119
15.3.7. int SM_SetCheckboxData(CheckboxType *c, void *d) (macro) 120
15.3.8. int SM_SetCheckboxLabel(CheckboxType *c, char *s) 120
15.3.9. int SM_SetCheckboxProc(CheckboxType *c, int (*f)()) (macro) 120
15.3.10. int SM_SetCheckboxState(CheckboxType *c, int state) 120
15.3.11. void SM_SetCheckboxType(CheckboxType *c, int type) 120

16. CHECKBOX GROUP 120

16.1. DATA TYPES 120
16.2. CHECKBOXGROUP CALLBACK PROCEDURE 121

The TWS Window System Reference and Tutorial Release 4.1.1

9 Introduction to the TWS Window System

16.3. INTERFACE FUNCTIONSSMCHKBX.H 121
16.3.1. CheckboxType *SM_AddCheckbox(CheckboxGroupType *g, RectType *box, char *label, int
buttonpos, int selected, void *data, int (*f)()) 121
16.3.2. CheckboxGroupType *SM_CreateCheckboxGroup(WindowType *w, RectType *r, char
*label, int draw, int (*f)()) 121
16.3.3. int SM_DestroyCheckboxGroup(CheckboxGroupType *g) 121
16.3.4. CheckboxType *SM_GetCheckboxSelected(CheckboxGroupType *g) 122
16.3.5. int SM_RemoveCheckbox(CheckboxType *cb) 122
16.3.6. int SM_SetCheckboxSelected(CheckboxGroupType *g, CheckboxType *c) 122
16.3.7. int SM_UngroupCheckboxGroup(CheckboxGroupType *g) 122

17. SLIDER 123

17.1. DATA TYPES 123
17.2. SLIDER CALLBACK FUNCTION 123
17.3. INTERFACE FUNCTIONS SMSLIDER.H 124

17.3.1. SliderType *SM_CreateSlider(WindowType *w, int type, RectType *box, int min, int max, int
size, int initpos, void *data, int (*f)()) 124
17.3.2. void SM_DestroySlider(SliderType *s) 125
17.3.3. void *SM_GetSliderData(SliderType *s) 125
17.3.4. int SM_GetSliderMax(SliderType *s) 125
17.3.5. int SM_GetSliderMin(SliderType *s) 125
17.3.6. int SM_GetSliderPosition(SliderType *s) 125
17.3.7. int SM_SetSliderChannel(SliderType *s, RectType *r) 125
17.3.8. int SM_SetSliderData(SliderType *s, void *d) 125
17.3.9. int SM_SetSliderMinMax(SliderType *s, int min, int max) 125
17.3.10. int SM_SetSliderPosition(SliderType *s, int p) 125
17.3.11. int SM_SetSliderScale(SliderType *s, int scale) 125

17.4. EXAMPLE 126

18. SCROLLBAR 128

18.1. DATA TYPES 128
18.2. SCROLLBAR CALLBACK FUNCTION 128
18.3. INTERFACE FUNCTIONS SMSCROLL.H 128

18.3.1. ScrollbarType *SM_CreateScrollbar(WindowType *w, RectType *r, int type, int min, int max,
int size, int init, void *data, int (*f)()) 128
18.3.2. void *SM_GetScrollbarData(ScrollbarType *sb) 129
18.3.3. int SM_GetScrollbarMax(ScrollbarType *sb) 129
18.3.4. int SM_GetScrollbarMin(ScrollbarType *sb) 129
18.3.5. int SM_GetScrollbarPosition(ScrollbarType *sb) 129
18.3.6. int SM_GetScrollbarScale(ScrollbarType *sb) 129
18.3.7. void SM_SetScrollbarChannel(ScrollbarType *sb, RectType *r) 129
18.3.8. void SM_SetScrollbarData(ScrollbarType *sb, void *data) 129
18.3.9. void SM_SetScrollbarMinMax(ScrollbarType *sb, int min, int max) 129
18.3.10. void SM_SetScrollbarPosition(ScrollbarType *sb, int pos) 129
18.3.11. SM_SetScrollbarProc(ScrollbarType *sb, int (*f)(SliderType *)) 130
18.3.12. void SM_SetScrollbarScale(ScrollbarType *sb, int scale) 130

19. STRINGLIST 131

19.1. DATA TYPES 131
19.2. STRINGLIST CALLBACK FUNCTION 132
19.3. KEYBOARD INTERFACE 132
19.4. SELECTING MULTIPLE STRINGS 133
19.5. INTERFACE FUNCTIONS SMSTRLST.H 134

19.5.1. StringlistType *SM_CreateStringlist(WindowType *w, RectType *r, char **list, int nitems, int
nstart, int ncols, int (*f)(), int destroyflag, int scrollflag, int multiflag, void *data) 134
19.5.2. int SM_DestroyStringlist(StringlistType *s) 134

The TWS Window System Reference and Tutorial Release 4.1.1

10 Introduction to the TWS Window System

19.5.3. int SM_GetStringlistNDisplay(StringlistType *s) 134
19.5.4. int SM_GetStringlistSelection(StringlistType *s) 135
19.5.5. int SM_GetStringlistSelectionCount(StringlistType *s) 135
19.5.6. int *SM_GetStringlistSelectionList(StringlistType *s) 135
19.5.7. char *SM_GetStringlistSelectString(StringlistType *s) 135
19.5.8. int SM_RedrawStringlist(StringlistType *s) 135
19.5.9. void SM_SetStringlistList(StringlistType *s, char **list, int nitems) 135
19.5.10. int SM_SetStringlistSelection(StringlistType *s, int n) 135

20. EDITSTRING 136

20.1. DATA TYPES 136
20.2. EDITSTRING CALLBACK PROCEDURE 137
20.3. EDITING A STRING 137
20.4. INTERFACE FUNCTIONS SMEDITST.H 137

20.4.1. EditstringType *SM_CreateEditstring(WindowType *w, RectType *box, char *str, int maxstr,
void *data, int (*f)()) 137
20.4.2. int SM_DestroyEditstring(EditstringType *e) 138
20.4.3. int SM_GetEditstringActive(EditstringType *e) 138
20.4.4. int SM_GetEditstringCursorpos(EditstringType *e) 138
20.4.5. int SM_GetEditstringGroup(EditstringType *e) 138
20.4.6. char *SM_GetEditstringString(EditstringType *e) (macro) 138
20.4.7. int SM_SetEditstringActive(EditstringType *e, int a) 138
20.4.8. int SM_SetEditstringCursorpos(EditstringType *e, int pos) 138
20.4.9. void SM_SetEditstringGroup(EditstringType *e, int group) 138
20.4.10. int SM_SetEditstringString(EditstringType *e, char *s) 139

21. TEXTBOX 140

21.1. DATA TYPES 140
21.2. TEXTBOX CALLBACK PROCEDURE 140
21.3. INTERFACE FUNCTIONS SMTEXT.H 141

21.3.1. int SM_BuildTextList(char *fname, TextlistType **tl) 141
21.3.2. TextboxType *SM_CreateTextbox(WindowType *w, RectType *r, char *filename, FontType
*font, int borderflg, int wrapflag, int (*func)()) 141
21.3.3. int SM_DestroyTextbox(TextboxType *tb) 141
21.3.4. int SM_SetTextboxRect(TextboxType *tb, RectType *r) 141
21.3.5. int SM_TextboxLineDown(TextboxType *tb) 141
21.3.6. int SM_TextboxLineUp(TextboxType *tb) 141
21.3.7. int SM_TextboxPageDown(TextboxType *tb) 141
21.3.8. int SM_TextboxPageUp(TextboxType *tb) 141

22. ROTATELIST 142

22.1. DATA TYPES 142
22.2. ROTATELIST CALLBACK PROCEDURE 142
22.3. INTERFACE FUNCTIONS SMMULTI.H 142

22.3.1. RotatelistType *SM_CreateRotatelist(WindowType *w, RectType *r, char **list, int align, int
(*f)(), void *data) 142
22.3.2. int SM_SetRotatelistList(RotatelistType *rl, char **list) 143
22.3.3. char *SM_GetRotatelistString(RotatelistType *rl) 143
22.3.4. int SM_GetRotatelistSelected(RotatelistType *rl) 143
22.3.5. void *SM_GetRotatelistData(RotatelistType *rl) 143
22.3.6. void SM_SetRotatelistData(RotatelistType *rl, void *data) 143
22.3.7. int SM_SetRotatelistSelected(RotatelistType *rl, int n) 144

23. PIXMAPS 145

23.1. DATA TYPES 145
23.2. PIXMAPS AND MEMORY USAGE 146

The TWS Window System Reference and Tutorial Release 4.1.1

11 Introduction to the TWS Window System

23.3. CREATING A PIXMAP 146
23.4. READING AND WRITING PIXMAPS FROM DISK 146
23.5. INTERFACE FUNCTIONS SMPIXMAP.H 147

23.5.1. void SM_ClearPixmap(PixmapType *pm, ColorType *c) 147
23.5.2. PixmapType *SM_CreatePixmap(WindowType *w, RectType *r, int Borderflag) 147
23.5.3. PixmapType *SM_ReadPixmap(char *filename) 147
23.5.4. void SM_MovePixmap(PixmapType *pm, int dx, int dy) 147
23.5.5. int SM_GetPixmapBlocking(PixmapType *pm); 147
23.5.6. void SM_SetPixmapBlocking(PixmapType *pm, int blocking); 148
23.5.7. void SM_SetPixmapPixel(PixmapType *pm, int x, int y, ColorType *c); 148
23.5.8. int SM_DestroyPixmap(PixmapType *pm); 148
23.5.9. ColorType *SM_GetPixmapPixel(PixmapType *pm, int x, int y, ColorType *c); 148
23.5.10. int SM_GetPixmapWidth(PixmapType *pm); 148
23.5.11. int SM_GetPixmapDepth(PixmapType *pm); 148
23.5.12. int SM_WritePixmap(PixmapType *pm, char *fname); 148
23.5.13. void SM_CopyPixmap(PixmapType *dest, PixmapType *source); 148

24. BORDERS 150

24.1. BORDER TYPES AND STYLES 150
24.2. INTERFACE FUNCTIONS [SMBORDER.H] 151

24.2.1. BorderType *SM_CreateBorder(WindowType *w, RectType *r, char *label, int position, int
type, int style, int thick, ColorType *color) 151
24.2.2. int SM_DestroyBorder(BorderType *border) 152
ColorType *SM_GetBorderColor(BorderType *border) [macro] 152
24.2.3. char *SM_GetBorderLabel(BorderType *border) [macro] 152
int SM_GetBorderPosition(BorderType *border) [macro] 152
int SM_GetBorderStyle(BorderType *border) [macro] 152
int SM_GetBorderThick(BorderType *border) [macro] 153
int SM_GetBorderType(BorderType *border) [macro] 153
24.2.4. RectType *SM_GetBorderRect(BorderType *border) 153
24.2.5. void SM_SetBorderLabel(BorderType *border, char *label) 153
void SM_SetBorderPosition(BorderType *border, int position) 153
24.2.6. void SM_SetBorderRectangle(BorderType *border, RectType *r) 153
24.2.7. void SM_SetBorderThick(BorderType *border, int thick) 153

25. HOTREGION 154

25.1. CREATING A HOTREGION 154
25.2. USING HOTREGIONS 155

25.2.1. Hotregion Callback Functions 155
25.3. INTERFACE FUNCTIONS [HOTREGN.H] 156

25.3.1. HotregionType *SM_CreateHotregion(WindowType *w, int npts, int *pts, void *data, int
(*drawfunc)(), int (*enterfunc)(), int (*leavefunc)(), int (*dragfunc)(), int (*userfunc)()) 156
25.3.2. void SM_HotregionMove(HotregionType *hr, int dx, int dy) 156
25.3.3. int SM_DestroyHotregion(HotregionType *hr) 156
25.3.4. void *SM_GetHotregionData(HotregionType *hr) (macro) 156
25.3.5. int SM_GetHotregionNpts(HotregionType *hr) (macro) 156
25.3.6. int *SM_GetHotregionPts(HotregionType *hr) (macro) 156

26. STANDARD DIALOGS 158

26.1. PICKLIST 158
26.1.1. Usage 158
26.1.2. Returns 159

26.2. YESNODIALOG 159
26.2.1. Usage 159
26.2.2. Returns 159

26.3. FILE SELECTION DIALOG 159

The TWS Window System Reference and Tutorial Release 4.1.1

12 Introduction to the TWS Window System

26.3.1. Usage 160
26.3.2. Returns 160

26.4. THREE-STATE DIALOG 160
26.4.1. Usage 161
26.4.2. Returns 161

26.5. ONE-STATE DIALOG 161
26.5.1. Usage 161
26.5.2. Returns 161

27. UTILITIES 162

27.1. INTERFACE FUNCTIONS SMWUTIL.H 162
27.1.1. void SM_PtCanvasToContent(WindowType *w, int xo, int yo, int *x, int *y) 162
27.1.2. void SM_PtDeviceToContent(WindowType *w, int xo, int yo, int *x, int *y) 162
27.1.3. void SM_PtContentToCanvas(WindowType *w, int xo, int yo, int *x, int *y) 162
27.1.4. void SM_PtDeviceToCanvas(WindowType *w, int xo, int yo, int *x, int *y) 162
27.1.5. void SM_PtCanvasToDevice(WindowType *w, int xo, int yo, int *x, int *y) 162
27.1.6. void SM_PtContentToDevice(WindowType *w, int xo, int yo, int *x, int *y) 162
27.1.7. int SM_SaveAsPCX(char *fname, RectType *r) 162
27.1.8. int SM_SaveWindowAsPCX(WindowType *w, char *fname) 162
27.1.9. int SM_SaveScreenAsPCX(char *fname) 163
27.1.10. int SM_SaveAsPostscript(char *fname, RectType *r) 163
SM_SetRectangle(static RectType *r, int x, int y, int width, int height) 163

28. TUTORIAL 181

28.1. GETTING ORGANIZED 181
28.1.1. Event-Driven Programming 181
28.1.2. “Object-centric” Programming 181
28.1.3. Designing a TWS Program 182

28.1.3.1. Understand the problem 182
28.1.3.2. Find the objects in the problem 182
28.1.3.3. Sketch organization of objects 182
28.1.3.4. Use windows intelligently 182
28.1.3.5. Plan for errors 183
28.1.3.6. Iterate 183

28.2. THE BASICS 183
28.2.1. Header files 183
28.2.2. System initialization 183
28.2.3. Application initialization 184
28.2.4. Event loop 184

28.2.4.1. Event-driven design 184
28.2.4.2. What is an event? 185
28.2.4.3. Event handling and callback functions 185
28.2.4.4. Events vs. messages 185

Quitting the Application 186
28.3. ADDING AN APPLICATION MENU 186
28.4. WINDOWS AT LAST! 186
28.5. SO FAR... 187
28.6. SIMPLE DRAWING 187
28.7. A GADGET EXAMPLE: TWSCALC 189
28.8. HANDS-OFF GRAPHICS: TRISERACT 190
28.9. ADDITIONAL EXAMPLES 192

INDEX 193

The TWS Window System Reference and Tutorial Release 4.1.1

13 Introduction to the TWS Window System

1. Introduction to the TWS Window System
The TWS™ is a Graphical User Interface (GUI) programming toolkit designed for use with
applications running on PC-compatible platforms in either real- or protected-mode, or with
embedded real-time operating systems supported by Metagraphics MetaWINDOW™. TWS uses
an object-oriented event-driven programming model that is easy to program, and that provides a
look and feel similar to Windows and Motif. TWS, however, is much smaller, faster and easier to
use.

At its core, TWS provides support for multiple independent overlapping windows. In addition, a
full compliment of user interface tools allow your application to integrate pull-down menus, dialog
boxes, list boxes, edit boxes, check boxes, combo boxes, push buttons, radio buttons, sliders,
scroll bars, and more. The TWS library provides a high-level layer between an application
program and the underlying MetaWINDOW graphics kernel that contains the foundation graphic
drivers and drawing functions.

You are encouraged to run the demos and begin using the TWS system. Be sure to register your
TWS Development Toolkit to receive the latest source code updates, documentation, sample
programs, tutorials and email-based help.

1.1. Legal Stuff

1.1.1. Copyrights

The TWS source code, library, documentation, example programs and all materials in the TWS
distribution kit are Copyright © 1992-1999 by TWS Software, all rights reserved. Except as
provided for in the Software License Agreement, no part of this document or other materials in
the TWS distribution may be reproduced or transmitted in any form without the prior written
consent of the copyright holder.

1.1.2. Warranty

The diskette on which this document and accompanying materials are distributed is warranted to
be free from material defects for a period of thirty (30) days following the date of purchase. If
notified within the warranty period, any defective diskette(s) will be replaced. Remedy for breach
of warranty shall be limited to replacement of the defective diskette(s) and shall not include any
other damages, including but not limited to loss of profit or other special or incidental damages.
This constitutes the entire warranty. All other warranties expressed or implied are specifically
denied, including but not limited to implied warranties of merchantability and fitness for a
particular purpose. The software in the TWS distribution is not warranted to be free from defect.
In no event shall TWS be liable for any loss of profit or any other commercial damage, including
but not limited to special, incidental, consequential or other damages in excess of the registration
fee.

1.1.3. Software License Agreement

Registration implies acceptance of the following terms and conditions. If you do not agree with
the following then promptly discontinue use of this product.

This software is protected by United States copyright law and international treaty provisions.
Distribution outside the United States is subject to export restrictions.

Single-User License
The TWS Development Toolkit is licensed for use by a single developer. Similar to your compiler
and other development tools, additional developers are required to each purchase an individual
license of the TWS Development Toolkit.

The TWS Window System Reference and Tutorial Release 4.1.1

14 Introduction to the TWS Window System

Redistributable Components
Executable application programs written using TWS may be used, distributed or sold without
additional licensing under the following conditions:

1) The application developer(s) are registered TWS Development Toolkit licensees.
Distribution of software containing elements of TWS prior to registering the TWS
software is a violation of federal law;

2) The programs developed using TWS must not compete with TWS - that is, you can’t use
the TWS library to develop another Graphics User Interface library or similar toolkit;

3) The TWS source code, example programs source code, or any part of this documentation
may not be redistributed.

Permission to copy the TWS Development Toolkit is granted for personal use (such as backups).

This license applies to the TWS Graphical User Interface Library System only. License
agreements for Metagraphics MetaWINDOW, your programming language compiler, or any other
required software must be obtained separately.

1.1.4. Trademarks

Borland C, Borland C++, Turbo C, Turbo C++ are trademarks of Borland International, Inc.
MetaWINDOW, FontBUILDER, FontWINDOW are trademarks of Metagraphics Software
Corporation, PO Box 225, Woodinville, WA 98072 (425) 844-1110. All other trademarks used
herein are the property of their respective owners.

1.2. Files in the Distribution
The TWS distribution consists of the following files:

TWS.LIB Borland/Turbo C library for the TWS window system. The library was
compiled using Borland C/C++ version 3.

TWSDOC.ASC 7-bit ASCII documentation, 80-column lines, no page breaks.

README ASCII file of last minute notes, registration information, etc.

EXAMPLES.EXE Self-extracting archive of TWS demos and example programs to accom-
pany the tutorial in the documentation.

*.FNT Various font files. The TWS system will use any font file supported by
the underlying graphics kernel. A collection of fonts the TWS system will
default to is supplied with the distribution, if appropriate.

*.ICN Various pixmap/icon files. This is an ever-changing collection. Pixmap
files are device-independent. A program for viewing/editing icon pixmap
files is included in the distribution.

The EXAMPLES archive contains programs to both demonstrate the TWS library and to help vali-
date code changes. This archive contains the following programs:

Program Purpose Description

WINTEST2 Basic event loop Initializes the graphics system and workspace, and
enters the event loop. See the Tutorial section later
in this document.

The TWS Window System Reference and Tutorial Release 4.1.1

15 Introduction to the TWS Window System

WINTEST3 Application menu Adds an application menu to the workspace window.
See the Tutorial section later in this document.

WINTEST4 DOCUMENT window
create and display

Opens an empty DOCUMENT application window
inside the workspace. See the Tutorial section later in
this document.

WINTEST5 Pull-down menus,
window menus.

Adds pull-down menu items to the workspace
window and a window menu to the application
window.

WINTEST6 Button gadget Puts a button and default button in a window,
attaches a user function to the buttons

WINTEST7 Editstring gadget Puts an editstring in the workspace window with
text.

WINTEST8 Color Tests the basic TWS color system. Requires 256-
color graphics.

WINTEST9 Backing store Same as WINTEST8 but with window backing store
enabled.

WINTESTA Color sharing Same as WINTEST9 but with two windows using the
same colors but in different palette positions. Test of
the sharing logic in the color system.

WINTESTB Checkbox gadget Displays a checkbox in a window. Attaches a user
function to it.

WINTESTC Label gadget Displays bordered and unbordered labels in a
window.

WINTESTD Stringlist gadget Displays a stringlist in a window. Attaches a user
function to the stringlist.

WINTESTE Slider gadget Displays horizontal and vertical sliders in a window,
attaches a user function to them.

WINTESTF Picklist composite
gadget

Displays a picklist.

WINTESTG Graphics label Creates a label with graphics instead of text. Demon-
strates casting a gadget to a window for drawing.

WINTESTH Pixmap-in-a-button Demonstrates using pixmaps as button facings.

WINTESTJ Pixmap gadgets Demonstrates pixmaps as standalone gadgets.

WINTESTK GetFilename standard
dialog

Demonstrates the standard dialog, SM_GetFilename.

WINTESTL YesNoDialog Demonstrates the two-state standard dialog.

WINTESTM Rotatelist test Demonstrates the new Rotatelist gadget for selecting
from a group of strings in a limited space.

WINTESTN Focus window change
event procedures

Demonstrates setting up application handlers for the
window GetFocus and LoseFocus events.

WINTESTO Event return values Provides a real-time display of the values returned by
the event handler as the mouse is moved around the
screen, keys pressed, etc.

The TWS Window System Reference and Tutorial Release 4.1.1

16 Introduction to the TWS Window System

WINTESTP Graphics image routines Demonstrates the new ImageType window graphics
routines. Copies a block of graphics from one window
to another.

WINTESTQ Borders NEW! Demonstrates the new decorative border
gadget.

WINTESTR Hotregion NEW! Demonstrates the new Hotregion gadget.

WINTESTS Window icons NEW! Demonstrates iconizing windows sharing the
same Pixmap.

CALC A simple 4-function
calculator.

Demonstrates virtual coordinates for buttons and
labels; gadget functions; attaching application data
to a gadget. See the Tutorial section later in this
document for a detailed discussion of this program.

CLOCK Analog clock display Demonstrates virtual coordinates for the graphics
canvas; background processing; the CLOCKTICK
event.

TRISERAC Abstract graphic display Demonstrates background processing; Textbox
gadget; window resize and close procedures. See the
Tutorial section later in this document for a detailed
discussion of this program.

ICONEDIT Pixmap/icon editor A program for viewing and modifying TWS pixmaps
suitable for window icons. Uses a number of TWS
features, including pixmap gadgets, pixmaps as
button facing, drawing, modal dialog functions,
button graphics functions, label graphics functions,
and standard dialogs.

WINIMAGE PCX Image file display Reads and displays PCX files in a window. If the
image window is resized, the image in it is resized to
match. Demonstrates color management, among
other things. 256-color graphics recommended.

WINDRAW Simple interactive
graphics

Demonstrates interaction techniques; trapping the
mouse; window procedures. See the Tutorial section
later in this document for a detailed discussion of this
program.

1.3. Linking the TWS Library with Application Code
The TWS library is linked with your application just like any other third party code library. Here’s
an example using the MetaWINDOW graphics kernel library and Borland’s linker:

tlink c0l myprog, myprog,, tws.lib metawin\met_xd1d.lib emu.lib mathl.lib cl.lib

This example assumes your program object file is called myprog.obj and you want the executable
to be called myprog.exe, and the appropriate directories are part of your system path.
A few important points about building and using the TWS library:

� For real-mode DOS, all library code is built using the LARGE memory model. Your program
must also be compiled using this model;

� The TWS library uses some floating point math so your application must link in a floating
point library;

The TWS Window System Reference and Tutorial Release 4.1.1

17 Introduction to the TWS Window System

� The TWS code requires the Metagraphics MetaWINDOW library. The linker may have
restrictions concerning which library should be first;

Borland C/C++:
� Application code must be byte-aligned for proper operation.

Make files are included for all the TWS demo programs. Use these as templates for building your
own applications. For more about writing TWS programs see the Tutorial chapter later in this
manual.

The TWS Window System Reference and Tutorial

18 Introduction to the TWS Window System

The TWS Window System Reference and Tutorial Release 4.1.1

19 Introduction to the TWS Window System

Part One

The Window
System

The TWS Window System Reference and Tutorial Release 4.0

20 System Overview

2. System Overview
TWS is a library of functions for creating robust event-driven, object-centric DOS applications that
employ a graphical user interface. The look and feel of TWS is derived from the X-Windows
OSF/Motif interface. However, TWS is much simpler to program.

2.1. Screen Display Organization
The TWS screen is organized into distinct functional areas. Those areas are:

.................
Workspace All application activity takes place within the workspace which occupies the

entire screen. This window is divided into the following
regions:

Application Title The name of the application is displayed here; otherwise this
region has no special significance. The title may be omitted.

Application Menu The main menu for the application. If present, this menu is
always enabled even when application windows have the
focus. An application doesn’t have to have an application
menu.

Workspace Content This is where application activity can occur, normally within
application windows. As far as most TWS functions are
concerned, the workspace is just another window. An
application can attach gadgets, draw graphics, or just about
anything else in the workspace.

Application Windows An application can create any number of individual windows
for drawing, displaying text, user input, program output, etc.
Application windows can only exist within the Workspace
Region. Three kinds of windows are supported:

The TWS Window System Reference and Tutorial Release 4.0

21 System Overview

Dialog Window A basic fixed-size window for data input and messages. Its
components are:

Title Bar Displays the window’s label. The window is moved by grab-
bing the title bar and dragging the window around within the
Base Window Desktop Region.

Close Button Closes the window. Control will go to the next highest
window in the stack, if any.

Window Menu (Optional). If present the window’s menu is a horizontal bar
underneath the window title bar. The menu will work in a
“pull-down” fashion.

Content Region All application output to any particular window will appear in
the content region of the window. This is the only part of the
window the application will be able to directly modify.

Document Window A general window. It contains the following components:
Title Bar Same as under the Dialog Window.
Resize Handles Each quadrant of the window border has a resize handle

region. The document window can be resized in the direction
of the quadrant by grabbing and dragging a resize handle.

Maximize Button Will cause the window to be redrawn at it’s maximum
possible size.

Minimize Button Causes the window to become “iconized” if it has an icon
attached to it, otherwise does nothing.

Close Button Closes the window. Control will go to the next highest
window in the stack, if any.

Window Menu (Optional). If present the window’s menu is a horizontal bar
underneath the window title bar. The menu will work in a
“pull-down” fashion.

Content Region All application output to any particular window will appear in
the content region of the window. This is the only part of the
window the application will be able to directly modify.

Simple Window This window has only a border. It’s useful for simple message
dialogs.

Panel Window (Optional, not illustrated). This is a special kind of “tiled”
window at the workspace level.

2.2. System Requirements
Developing applications with the TWS window system requires a computer based on an 80x86
processor running DOS 3.0 or above, 640k bytes RAM, keyboard, Microsoft-compatible mouse,
and hard disk drive. A supported graphics subsystem is also required. The graphics kernel system
vendor can supply a list of supported devices.
Applications developed using TWS will have varying requirements depending on the application
but all will require a supported graphics subsystem including the mouse. A hard disk drive is
strongly recommended for all TWS-based applications.

2.3. System Design
This section describes the major concepts and subsystems of the TWS GUI library. Each part of
the TWS library works in concert with the rest. Rather than being a disjoint collection of
independent graphical add-on functions, TWS is a comprehensive user interface and application
design environment.

The TWS Window System Reference and Tutorial Release 4.0

22 System Overview

2.3.1. Windows

The window is one of the fundamental structures of a TWS application. It provides the basis for
all other TWS operations -- user interface gadgets, drawing, etc., all happen relative to a parent
window. Windows also provide an encapsulation layer for application data and functionality —
data, by means of generic ‘hooks’ in the window data structure, and functionality through gadget
and window callback functions.

2.3.2. The Window Stack

Windows in TWS are organized as a stack. The active window is at the top of the stack. Most
output can be sent to any window, but only the active window will respond to interactive events.
For example, you can draw in an inactive window but clicking on a button in that window will not
activate the button.
When a window is created and opened it is placed at the top of the stack. When a window is
closed the next-highest window in stacking order is automatically activated.

2.3.3. Save-unders and Backing Store

TWS uses save-unders and backing store. Save-unders are mostly used for pull-down menus.
Backing store is used for window graphics canvas regions. If either save-under or backing store
fails it aborts the application. The application determines whether or not a window will use
backing store when the window is created, but menu save-unders are non-negotiable.

2.3.4. Gadgets

Most user interaction in a TWS application is via interface devices called gadgets. Gadgets include
buttons, labels, editable strings, radio buttons and checkboxes, sliders, etc. By manipulating the
gadgets in an application, the user causes things to happen.
TWS gadgets are objects in the sense that they encapsulate their own data and behavior, as well
as application data and behavior. Data is passed to the application function by attaching it to the
button itself, so gadgets also serve as a primary data passing mechanism.

2.3.5. Event Processing

Actions in an event-driven application are generally initiated as the result of external events like
mouse buttons and keyboard keys being pressed, and internal events like the system clock.
There is no way in general to predict what event will occur next based on preceding events, and
there is no good mechanism for ensuring that any specific sequence of events will occur. This is
somewhat contrary to “traditional” programming, but it’s a lot like real life. Your stereo doesn’t
know which buttons or channel you’re going to select next, but manages to work fine
nonetheless.

2.3.6. Window Coordinate System

The window coordinate system is relative to the upper-left corner of the window content region,
which is at coordinate (0,0). Coordinates increase to the right and downward. A position outside
the content region is invisible.
The sizes of all objects in a window are in screen pixels. An exception is certain gadgets which
can be specified in virtual coordinates, or fractions of the size of the window content. The actual
display size of such a gadget depends on the actual size of the window content when the gadget
is drawn.

2.3.7. Graphics

TWS graphics are part of a subsystem called the graphics state. The graphics state contains all
information necessary to do freeform drawing — a local color palette table, current foreground
and background colors, line thickness, graphics position, etc. The graphics state also contains the

The TWS Window System Reference and Tutorial Release 4.0

23 System Overview

rectangular region where all graphics are drawn. This region is relative to the content region of
the window, like gadgets. All drawing is clipped to the graphics canvas, which is clipped within
the window content.

2.3.8. Background Processing

A simple “cooperative multi-threading” system allows portions of an application to execute in the
background with minimum impact on the main program and user interface. The application
decides how much processing is done during each time slice. The background task manager
works with the event manager so that background functions can be sensitive to events, such as
clock timer events, and the system state, such as only being called if a particular window is
active.

2.3.9. Callback Functions

The main link between applications and the TWS user interface is via callback functions. A
callback function is an application function that’s designed to be called whenever a particular
action occurs. Mostly, callback functions are executed when a gadget is activated. Each gadget
has its own set of conditions that cause it to execute its callback function, usually when the state
of the gadget is changed. For example, clicking a button causes its callback function to be
executed.
Windows may also have callback functions, called window procedures. The window procedure for
the active window, if it has one, is called on each pass through the event loop.

The TWS Window System Reference and Tutorial Release 4.0

24 Windows

3. The TWS Window System
The window is the fundamental data structure in the TWS system. Nothing happens in a TWS
program except as part of or relative to some window. Even the workspace region is im-
plemented as a window (albeit a special one) and has just about the same interface as other
windows (for example, gadgets can be attached to the workspace window, and you can create a
workspace graphics canvas and draw in it).

3.1. Window Types
Windows are defined by their type and their attributes. The window type determines how the
window responds to user input, and the attributes determine other types of behavior and
appearance. The different window types are described below.

3.1.1. Document-Type

A DOCUMENT-type window is the most flexible type. It can be moved, resized, maximized,
minimized, and closed, all by user-input or through application functions. Visually a DOCUMENT
window is distinguished by four chiseled sections on its border. DOCUMENT windows respond to
the following input events:

Event Result

Click-and-drag title bar Moves the window on the screen.

Click-and-drag within a border
section

Resize the window in the direction of the border. The
opposite border is anchored. Resizing is “diagonal” —
the window can be resized in both width and height.

Click the Minimize button If the window has an icon attached to it, the window is
minimized. Otherwise nothing happens.

Click the Maximize button Enlarges the window to fit the workspace content
region. The maximized window obscures the application
menu, if any, but not any panels.

Click the Close button Closes the window.

3.1.2. Dialog-Type

DIALOG-type windows are similar to DOCUMENT-type, except they can’t be resized by the user.
They can be moved, however, in the manner described above. Their borders are solid and are
not sensitive to user input actions.

3.1.3. Simple-Type

A SIMPLE-type window has no border or title and can’t be moved or resized by user input. They
may not have menus. Since they don’t have title bars and therefore don’t have a close button,
the application must supply a specific means for the user to close a SIMPLE-type window, such
as a button or a time-out. SIMPLE windows are used for basic message boxes (for example, see
the chapter on Standard Dialogs).

3.1.4. Window Attributes

Attributes determine other internal behaviors and appearance features of the window. The
window attributes are set when the window is created. Attributes can be combined by OR-ing
them.

The TWS Window System Reference and Tutorial Release 4.0

25 Windows

3.1.4.1. SCROLLATTRIB

The SCROLLATTRIB attribute determines whether the window will be scrollable. If this attribute
is set then the window will be drawn with horizontal and vertical scrollbars.
Window scrolling is described in a following chapter.

3.1.4.2. BACKING

When a window’s BACKING attribute is set, the contents of the window’s graphics canvas region
is written to disk each time the window is drawn. When a window graphics canvas must be
redrawn (i.e., restored with no changes), the contents can be restored from disk.
The BACKING attribute has some limitations. This is discussed in detail in the Graphics chapter.

3.1.4.3. ICONONLY

The window can only exist as an icon. Implies the ICONINIT attribute.

3.1.4.4. ICONINIT

When the window is opened, start it as an icon. The window must have an icon attached before
SM_OpenWindow is called.

The TWS Window System Reference and Tutorial Release 4.0

26 Windows

3.2. Window Scrollbars
A window with its SCROLLATTRIB attribute set when it’s created is drawn with scrollbars around
its border. When a window is scrollable, the area displayed in the window’s content region is a
portion of a larger ‘virtual’ region whose boundaries are defined by the application. As the
scrollbars are moved, a different area is displayed.

Actual Window Content Region

Virtual Window Content Region

hoffs

vo
ff

s

In order for a window to have scrollbars, it must be created with the SCROLLATTRIB attribute:

w = SM_NewWindow(&winrect, "ScrollWindow", DIALOG | SCROLLATTRIB, NULL, NULL);

By default, the size of the virtual region is the same as the window content. The virtual region
size can be changed by calling SM_SetWindowScrollbarMinMax:

winrect.Xmin = 150;
winrect.Xmax = 300;
winrect.Ymin = 100;
winrect.Ymax = 350;
w = SM_NewWindow(&winrect, "ScrollWindow", DIALOG | SCROLLATTRIB, NULL, NULL);
SM_SetWindowScrollbarMinMax(w, HVERTICAL, -50, 350);

The effect of the code segment above is to create a window whose content region is 150 pixels
in the X (horizontal) direction, and 250 pixels in the vertical direction. Then, the range of pixels
for the vertical (Y) scrollbar is changed from the default (0..250) to (-50, 350). Since the range
displayable in the window is now less than the total virtual range, the scrollbar drag bar is resized
accordingly.

3.3. Using Scrollbars
In the simplest case the application doesn’t have to do anything to use window scrollbars except
include the SCROLLATTRIB attribute when the window is created and set the minimum and
maximum values as shown above. TWS sets a default procedure for the scrollbar that changes
the offset for the virtual content region and redraws the window in real time as the scrollbar is
moved.
There will be many cases when it’s impractical for the system to update a window as the scrollbar
is dragged, particularly when there are complicated graphics involved. The application will instead

The TWS Window System Reference and Tutorial Release 4.0

27 Windows

want to defer updating the screen until the user finishes dragging the scrollbar. In these cases
the application will want to replace the default scrollbar procedure with a different one.
In the end a window scrollbar is just a scrollbar (so most everything in the Scrollbar chapter
applies). To modify a scrollbar’s attribute requires the scrollbar pointer. For window scrollbars use
the SM_GetWindowScrollbar function to get this pointer:

ScrollbarType *hwscroll;
hwscroll = SM_GetWindowScrollbar(w, HSCROLLBAR)

To get the vertical scrollbar, use VSCROLLBAR instead.
The scrollbar callback function can now be changed using the SM_SetScrollbarProc function:

SM_SetScrollbarProc(hwscroll, MyNewFunc);

The application window scrollbar callback must do one thing that a gadget scrollbar doesn’t have
to do — it must explicitly change the content region’s position relative to the virtual content
region. Otherwise the window contents won’t change position.1 Set the window’s horizontal and
vertical offsets using the SM_SetWindowOffset function:

int MyScrollbarFunc(SliderType *slider)
{

int position;
/* other processing ... */
position = SM_GetSliderPosition(slider);
SM_SetWindowOffset(SM_GetGadgetWindow(slider), HSCROLLBAR, position);

}

3.3.1. Window Scrollbars and Resizing

When a user resizes a window, the area inside the content region changes, but the area of the
virtual content region doesn’t. Some applications may want to make the virtual area always
relative to the size of the actual window content. This can be done by attaching an application
callback function to the resize window event. This is discussed in a later chapter.
As the window content region size changes relative to the virtual content, the window scrollbar
thumbbars (or drag bars) are resized accordingly. This does not trigger the scrollbar callback
function.
The virtual content will not become smaller than the actual window content region no matter
how small the window gets. All objects whose coordinates are within the actual window content
boundaries will be visible.

3.3.2. Window Scrollbar Callback Procedures

The default action when a window scrollbar is manipulated by the user is to change the origin
within the content region relative to the virtual region, then redraw the window. The effect of this
is to move all the window contents in real time as the user drags the thumbbar. This includes the
graphics state region, which means any graphics will also be redrawn.
The application can attach a local callback function to the window scrollbar which is called
whenever the scrollbar’s position changes (see the chapter on the ScrollbarType gadget for
details). The application callback function can augment or change the behavior of the scrollbar.
In particular, the application may want to override the window redrawing because if there are
many gadgets or complex drawings, the redraw won’t be able to keep up. The application will
want to change this so that the window is redrawn only after the user has finished moving the
scrollbar. The chapter on the Scrollbar gadget describes how to do this.

1 Unless you don’t want the contents to change. It’s up to you, really.

The TWS Window System Reference and Tutorial Release 4.0

28 Windows

3.4. Window Management Events
Internally every window responds to a number of window management events. There are six
window management events: Drawing, Redrawing, Resizing, Closing, Getting Focus, and Losing
Focus. In each case the window manager performs some default action (often it does nothing).
The default behavior can be modified by application code. The application functions which modify
window management events are called window management callback procedures.
All windows that draw graphics must supply callback functions for the Draw and Resize events if
the drawing is going to survive moving, iconizing, and resizing of the window it’s in. It is not
necessary to provide any extra handling just to manage gadgets, because the system itself takes
care of drawing them as necessary. This includes gadgets that can contain graphics, like
pixmaps, buttons and labels.

3.4.1. Window Management Callback Procedures

For each window management event there is a hook for the user to supply functionality to
replace the default TWS behavior. A window manager procedure is an int function whose single
argument is a pointer to a window. When called, the pointer will point to the window where the
window management event occurred. Currently, the return value from the function is ignored.

Event Default Behavior Description

Draw Clear the content
region to the window’s
content color.

Function called when the window contents must be
generated from scratch, such as when the window is
first created.

Redraw Do the same thing
that is done for the
Draw event.

Function called when the window must be restored but
the window hasn’t changed; for example, when the
window is moved. Usually this function is optimized to
provide a very fast way of restoring the window’s
content or graphics canvas, usually by reading an
image from disk. See also the BACKING window
attribute.

Resize Do the same thing
that is done for the
Draw event.

Called when the window is resized. Most applications
that use resizeable windows will have window-size-
dependent data. For example, a window that displays
text may need to recalculate how many lines will fit in
the window. An application that displays images may
want to scale the image to fit the window.

Close Nothing When a window is closed TWS reclaims all memory
and destroys all internal structures as well as window
gadgets (but not menus). The window itself is erased
and the next window on the window stack becomes
active. Often an application window will have
application-specific data attached to it’s data field;
TWS can’t know how to deal with this data, so the user
must supply a function for dealing with it. Also, TWS
doesn’t verify that a window should be closed; often
an application will supply confirmation dialogs before
closing certain windows, especially if data might be
lost. The window management procedure can cancel
the closing of the window by returning a non-zero
value.

GetFocus Nothing

The TWS Window System Reference and Tutorial Release 4.0

29 Windows

LoseFocus Nothing The GetFocus function is called after the window has
been brought to the top of the stack and redrawn. The
LoseFocus function is called before the active window
actually changes. The return value from the function is
ignored, and the application can’t prevent the active
window change through these functions.

3.4.2. Setting a Window Event Callback

A window management event callback function is an int function whose argument is the window
affected by the event. Each event has a corresponding Set... and Get... function. To set an
application function that will be called whenever the window becomes active, for example, use:

SM_SetGainFocusProc(w, AppFunc);

3.5. Configuration File
Most TWS system parameters have reasonable preset defaults so that a basic TWS program can
be run with a minimum of fuss. However, some window parameters can be customized when a
TWS application is started via a configuration file.
During initialization TWS looks for an environment variable called TWSCONFIG. This variable, if
present, is assumed to contain the path and filename of a configuration file for all TWS
applications. This file is opened and its contents read by the initialization procedure.
If the TWSCONFIG environment variable is not set, the initialization procedure then looks for a
file called TWS.CFG in the current directory. If not found, it then looks for TWS.CFG in the root
directory of the current disk. If either of these succeeds the file is opened and read. Otherwise
the system proceeds with internal default values for all system parameters.

3.5.1. Configuration File Format

The TWS configuration file is a collection of attribute-value pairs. Defined attributes are:

Parameter Description
BorderWidth Width, in pixels, for the window borders/resize handles. If no window bor-

der width is specified in a configuration file then TWS calculates a reason-
able size based on the display resolution.

GraphDevice A code for the desired graphics display and resolution. Please see
Appendix D in the Metagraphics MetaWINDOW Reference Manual for a list
of supported display modes. The “metconst.h” header file included with
MetaWINDOW provides an master list of graphics adaptor definitions for
display modes supported by MetaWINDOW along with their associated
values for GraphDevice.

MouseDevice A code for the desired graphics pointer device. Please see Appendix D in
the Metagraphics MetaWINDOW Reference Manual for a list of supported
mouse input devices. The “metconst.h” header file included with
MetaWINDOW provides a master list of input device definitions for mice
supported by MetaWINDOW along with their associated values for
MouseDevice.

FontPath Directory path for system font files. If no font path is specified in a con-
figuration file then TWS expects font files to be in the current directory.

IconPath Directory path for icon pixmap files. If no path is specified, TWS expects
icon pixmaps to be located in the current directory.

The TWS Window System Reference and Tutorial Release 4.0

30 Windows

SystemFont Name of the font file to use as the system font, which is used on menus,
dialogs, labels, etc., but not window titles or text displays. If no system
font file is specified in a configuration file then TWS uses the sys256.fnt if
the display supports 256 colors, or sys16.fnt if the system supports 16 col-
ors. These fonts are included in the TWS distribution. The files are as-
sumed to be located in the FontPath directory, described above.

TitleFont Name of the font file to use as the window title font. If no title font file is
specified in a configuration file then TWS uses title256.fnt if the display
supports 256 colors, or title16.fnt if the system supports 16 colors. These
fonts are included in the TWS distribution. The files are assumed to be lo-
cated in the FontPath directory, described above.

TextFont Name of the font file to use as the window text font. If no text font file is
specified in a configuration file then TWS uses the system font.

BevelDepth The amount of “sculpting” for 3D window elements. Values is the number
of pixels devoted to the sculpted appearance. For window borders the
sculpting is drawn to the inside of the window border, so the border width
should be at least 2*BevelDepth+1. For buttons and other gadgets the
sculpting is drawn inside the gadget boundary. Default is 1 pixel of bevel
for screen resolutions less than 1024x768, and 2 pixels for 1024x768 and
higher resolutions.

FocusColor Sets the active_border_color in the window defaults file, which is the
active window border, title, and menu color. Specified as an RGB triple,
with each primary color in the range 0..255 and separated by at least one
space.

WorkspaceColor Sets the color for the application workspace background. Specified as an
RGB triple, with each primary color in the range 0..255 and separated by
at least one space.

AppTitle The string to display in the application title bar.
SysDevice Device and path to use for window temporary storage. Normally TWS uses

the default drive and directory for backing store, image saves and other
temporary storage. The system device attribute lets the application use a
fast RAM drive, if available, which will significantly speed some operations.

WindowLimits Controls whether or not new windows will be constrained to the screen
limits. If ON (the default), if the application tries to create a window that
would extend off the edge of the physical screen, the system will reduce
the window in that dimension to fit. When OFF the application can create
windows of any size. In all cases, windows whose graphics canvases are
not on the physical screen and which have BACKING enabled may not
redraw properly due to hardware constraints.

Configuration data is not case-sensitive for either the attributes or values, although mixed case is
shown in the table for readability. If an attribute is specified more than once then the last value
specified has precedence.
Most information in the configuration file is device-independent. The exception is the
GraphDevice and MouseDevice. These values depend on the hardware installed in the computer
that’s running the application. It’s up to the application to insure these values are valid.

The TWS Window System Reference and Tutorial Release 4.0

31 Windows

3.5.1.1. Example
The following is an example TWS configuration file for the MetaWINDOW 4 graphics kernel:

 GraphDevice 8500
 MouseDevice 49
 SystemFont sys16.fnt
 TitleFont title16.fnt
 TextFont sys16.fnt
 FocusColor 240 138 79
 WindowLimits Off

In the example, the graphics device is an S3-based video system at 1024x768 resolution, 256
colors (8500), Microsoft Mouse driver (49). The system and text fonts are sys16.fnt in the local
directory, and the title font title16.fnt is also in the local directory.

3.6. Windows
The window is the focus for all input and output in TWS. Windows are self-contained with their
own coordinate system, interface gadgets, graphics attributes and so forth. You can also attach
application data to windows.

3.7. Include file: smwindow.h
/*
** The window structure
*/
typedef struct _win {
 /*
 ** Window display regions
 */
 RectType window; /* Max extent of complete window */
 RectType content; /* Drawing area */
 RectType orig_content; /* Old content region for max */
 RectType titlebar;
 RectType stretch_left, /* Window 'grab' regions */
 stretch_up,
 stretch_right,
 stretch_down,
 menubutton,
 iconize,
 fullscreen;
 PolygonType upleft,
 upright,
 downleft,
 downright;
 RectType windowmenu; /* Window menu region */

 /*
 ** Minimum width/height for the window
 */
 int minx, miny;

 char *title; /* Titlebar title */
 void *icon; /* Icon version of the window */
 int is_icon; /* TRUE if window is iconized */
 int is_maximized; /* TRUE if window is maximized */
 int type; /* Window type */
 void *data; /* User-defined data */
 void *gadgets; /* Window gadget list */
 /*
 ** Window procedures
 */
 int (*windrawproc)(struct _win *);/* Procedure for drawing win borders*/
 int (*drawproc)(struct _win *); /* Procedure for drawing contents */
 int (*redrawproc)(struct _win *); /* Procedure for redrawing contents */
 int (*resizeproc)(struct _win *); /* Procedure for redrawing contents */
 int (*userproc)(struct _win *, EventType *e);

The TWS Window System Reference and Tutorial Release 4.0

32 Windows

 int (*closeproc)(struct _win *); /* Procedure when window closed */
 int (*losefocusproc)(struct _win *);
 int (*getfocusproc)(struct _win *);
 /*
 ** The window graphics state
 */
 GraphStateType *gs;
 /*
 ** Content region colors
 */
 int ncolors; /* Size of the window color table */
 MenuType *menu; /* Window menu */
 ColorType content_color; /* Color of content region */
 int redraw; /* TRUE if window needs to be drawn */
 int locked; /* TRUE if window is locked */
 struct _win *next, *prev;
} WindowType;

The TWS Window System Reference and Tutorial Release 4.0

33 Windows

3.8. Interface Functions smwindow.h

3.8.1. Initialization Functions
This group of functions create, open, and close the window system and individual windows. For
any TWS application, the following steps are required:

• Initialize the graphics kernel system and window system by calling SM_Init;
• Initialize the application by calling SM_OpenApplication;
• For each window in the application, SM_NewWindow creates and initializes it, then...
• Call SM_OpenWindow to open each window. SM_CloseWindow closes them;
• Process events;
• Close the application and restore the system by calling SM_Exit.

3.8.1.1. int SM_CloseAllWindows()

Closes all open windows except the workspace window. This is more convenient than saving the
window value for each open window, then closing each one individually.

3.8.1.2. int SM_CloseWindow(WindowType *w)

Destroys the specified window and frees all memory associated with it. The window must have
been previously opened by the SM_OpenWindow function. SM_CloseWindow calls the
argument window’s close window management event procedure, if any, before closing the
window itself. If the event procedure returns a non-zero value then the window is not closed.
 This is the function called by the event manager when a window’s Close button is pressed.

3.8.1.3. int SM_Exit(WindowType *w)

Shuts down the window system and returns to DOS. This function does not return to the
application. SM_Exit does not use the window argument, so the application often supplies a
NULL argument. The w argument is part of the function so it can be attached to a menu item. All
TWS applications must call SM_Exit to restore interrupt handlers and return to character-mode
DOS; otherwise, the computer will surely hang.

3.8.1.4. int SM_Init(int graphdevice, int mousedevice)

Initializes the graphics kernel system, window manager, event system, fonts, system colors, and
reads the configuration file. This function must be called before any other window manager
functions.
The relevance of the command line argument string(s) in argv depends on the underlying
graphics kernel system. In general they override the graphics device and mouse device that may
be in the configuration file. If either device is 0 then the configuration option is used, otherwise
the function argument is used.

3.8.1.5. int SM_LoadSystemFont(char *fontname)

Reads a font from the file fontname and makes it the system font. The font file is first searched
for in the current directory, then in the directory specified by the FontPath configuration
parameter, if any. The existing system font is discarded in favor of the new font. The font must
be in the correct format for the graphics kernel system. Does not change any screen elements
already drawn. See also: SystemFont configuration parameter.

3.8.1.6. WindowType *SM_NewWindow(RectType *s, char *t, int ty, MenuType *m,
void *d)

Creates a new instance of a window and returns a pointer to it. Does not draw to the screen.

The TWS Window System Reference and Tutorial Release 4.0

34 Windows

s The size and position of the window’s content region. The system builds the window
borders, title, menus and so forth around the outside of the content. This is usually
more convenient for the application. The system won’t allow a window to be created
that is larger than the physical screen. The window, including the size of the content
region r, will be reduced if necessary to keep the entire window on the screen.

t....... Title for the window. The system makes a copy of this string.
ty Window type. Defines the window style and whether the window contents will use

backing store. Use one of the pre-defined constants, SIMPLE, DIALOG or DOCUMENT,
for the window style. The backing store constants are BACKING and NOBACKING -- the
default is NOBACKING. The constants are ‘or’-ed to build a complete type.

m The window’s menu, drawn right under the title bar. Set to NULL for no menu.
d User-specific data to attach to the window. This is usually a pointer to a user structure.

Send NULL for no user data.

Creating a new window doesn’t cause the window to be drawn -- SM_OpenWindow does that.

3.8.1.7. int SM_OpenApplication(char *t, MenuType *m)

Initializes the workspace for a TWS application. The main result of this is to initialize and draw
the workspace “window” including it’s title and menu, if any. This function must be called only
once in any application, usually at the beginning. SM_Init must be called before calling
SM_OpenApplication.

t.... Application title, displayed in the application title bar. If NULL the application title bar is
omitted and the application menu and workspace content region are enlarged accord-
ingly. If an empty string is passed the application title bar is included but will be empty.

m .. Application menu. Send NULL for no menu, in which case the workspace content region
fills the space where the menu would have been.

3.8.1.8. int SM_OpenWindow(WindowType *w)

Displays the window on the screen. SM_OpenWindow should be called only once for each
window. The window must already be created using the SM_NewWindow function.

3.8.1.9. int SM_ReadConfig(void)

Re-read the TWS.CFG or the configuration file given by the TWSCONFIG environment variable.
The configuration file is read when the TWS window system is initialized. Re-reading the file
would change any window default value specified in the configuration file, while other
parameters would be unchanged.

3.8.1.10. void SM_UnmapWindow(WindowType *w)

Removes a window from the window stack but doesn’t otherwise affect the window. Redraws the
screen with the window missing. The window can be “popped-up” by passing it to
SM_OpenWindow. This function is useful for creating pop-up dialogs.

WindowType *ErrorDialog;
LabelType *ErrorLabel;
/*
** ‘ErrorDialog’ is a window that displays an error message to the user, then
** goes away when the user presses the button. The PopupErrorDialog function
** accepts a string to be displayed and puts it into ErrorLabel, which is a
** gadget that’s part of the dialog window. In the application, the sequence of
** events would be something like:
**
** InitErrorDialog();
** /* ... */

The TWS Window System Reference and Tutorial Release 4.0

35 Windows

** if (error_condition) {
** PopupErrorDialog(“An error has occurred!”);
** }
*/

LabelType *ErrorLabel;
WindowType *ErrorDialog;

/*
** Initialize the error dialog window but don’t display it
*/
void InitErrorDialog(void)
{

RectType erect;

erect.Xmin = erect.Xmax = 150;
erect.Xmax = 350;
erect.Ymax = erect.Ymin + 75;
ErrorDialog = SM_NewWindow(&erect, “ERROR!”, SIMPLE, NULL, NULL);
erect.Xmin = erect.Ymin = 5;
erect.Xmax = SM_GetContentWidth(ErrorDialog) - 5;
erect.Ymax = erect.Ymin + 25;
ErrorLabel = SM_CreateLabel(ErrorDialog,

 &erect,
 NULL,
 SM_GetSystemFont(),
 ALIGNCENTER,
 False,
 False,
 True,
 NULL);
 erect.Xmin = SM_GetContentWidth(ErrorDialog) / 2 - 50;
 erect.Xmax = erect.Xmin + 100;

erect.Ymax = SM_GetContentDepth(ErrorDialog) - 5;
erect.Ymin = erect.Ymax - 25;
SM_CreateButton(ErrorDialog,

 &erect,
 “OK”,
 NULL,
 CloseErrorDialog);
}

/*
** Set the error dialog string and display the dialog
*/
void PopupErrorDialog(char *str)
{

SM_SetLabelString(ErrorLabel, str);
SM_OpenWindow(ErrorDialog);

}

/*
** ‘CloseErrorDialog’ is the callback function attached to the
** ErrorDialog close button. When the user presses the button, the ErrorDialog
** window goes away, but it still exists.
*/
int CloseErrorDialog(ButtonType *b)
{

SM_UnmapWindow(ErrorDialog);
}

The TWS Window System Reference and Tutorial Release 4.0

36 Windows

3.8.2. Window Attribute Functions

3.8.2.1. int SM_GetColorScheme() Obsolete

Returns the color scheme constant associated with this instance of the windowing system. The
color schemes are SMWARM and SMCOOL. The color scheme is established at system
initialization.

3.8.2.2. ColorType *SM_GetContentColor(WindowType *w) (Macro)

Returns the current background color for a window’s content region.

3.8.2.3. int SM_GetContentDepth(WindowType *w) (Macro)

Returns the depth in pixels of the content region for the argument window. The depth is Ymax -
Ymin + 1.

3.8.2.4. RectType *SM_GetContentRect(WindowType *w) (Macro)

Returns a pointer to the rectangle describing the argument window’s content region. The
rectangle is in device coordinates. This should be treated as read-only data, as changes to the
content rectangle will confuse the window manager.

3.8.2.5. int SM_GetContentWidth(WindowType *w) (Macro)

Returns the width in pixels of the content region for the argument window. The width is defined
as Xmax - Xmin + 1.

3.8.2.6. int SM_GetDefaultBevelDepth()

Returns the width in pixels of the beveling or sculpting on button, window border, etc., rectangle
edges. This value can be set in the TWS configuration file.

3.8.2.7. int SM_GetDefaultBorderWidth()

Returns the width of the window borders as stored in the window defaults data structure. All
windows use this value for their borders.

3.8.2.8. int SM_GetDefaultMenubarDepth()

Returns the depth in pixels of a window menu bar. The depth of the menu bar is based on the
size of the system font. This value can’t be changed by the application.

3.8.2.9. ColorType *SM_GetDefaultTextColor()

Returns the color for window text as stored in the window defaults data structure.

3.8.2.10. int SM_GetDefaultTitlebarDepth()

Returns the depth in pixels of a window title bar. The value is calculated at initialization based on
the size of the title font. It can’t be changed by the application.

3.8.2.11. int SM_GetDisplayDepth()

Returns the device pixel index of the bottom-most screen pixel. For example, on a 640x480
display, 479 is returned.

3.8.2.12. int SM_GetDisplayWidth()

Returns the device pixel index of the right-most screen pixel. For example, on the 640x480
display, 639 is returned.

The TWS Window System Reference and Tutorial Release 4.0

37 Windows

3.8.2.13. GadgetType *SM_GetGadgets(WindowType *w) (Macro)

Returns a pointer to the list of gadgets attached to window w. See the chapter on Gadgets for
details on the GadgetType structure.

3.8.2.14. GraphStateType *SM_GetGraphState(WindowType *w) (Macro)

Returns a pointer to the graphics state structure for the argument window. This is a pointer to
the actual window graphics state and in most cases should be treated as read-only. See the
chapter on Graphics for information on the window Graphics State.

3.8.2.15. FontType *SM_GetSystemFont()

Returns a pointer to a font structure for the current system font. Most window text is drawn
using the system font.

3.8.2.16. int SM_GetSystemFontDescent()

Returns the number of screen pixels below the system font’s baseline. Not all graphics kernels’
font formats support this field, in which case the return value is 0.

3.8.2.17. int SM_GetSystemFontHeight()

Returns the height in pixels for the current system font. The font height is based on the cell
dimensions the font characters are drawn in, which may be larger than the actual character
pixels.

3.8.2.18. ColorType *SM_GetTextColor()

Returns the current system text color. The text color is one of the 16 system colors.

3.8.2.19. FontType *SM_GetTextFont()

Returns the currently loaded text font. The Text font is presently used for the Textbox gadget.

3.8.2.20. FontType *SM_GetTextFontHeight()

Returns the height in pixels of the current text font. This font is used by default by the Textbox
gadget. If a unique font isn’t specified in the TWS configuration file tws.cfg, then the text font
defaults to the system font.

3.8.2.21. int SM_GetTitleFontHeight()

Returns the height in pixels of the current title font. The font height is based on the cell in which
the title font characters are drawn, which may be larger than the actual font pixels.

3.8.2.22. void *SM_GetUserData(WindowType *w) (Macro)

Returns the user data field from the argument window. This is typically a pointer to a data
structure maintained by the application.
Example:

MyDataStruct *mystruct;
mystruct = (MyDataStruct *)SM_GetUserData(w);
mystruct->intval = 1;

3.8.2.23. int SM_GetWindowDepth(WindowType *w) (Macro)

Returns the depth (Ymax - Ymin + 1) of the argument window. This is the total depth from border
edge - to - border edge. See also: SM_GetContentDepth; SM_GetWindowWidth;
SM_GetCanvasDepth.

The TWS Window System Reference and Tutorial Release 4.0

38 Windows

3.8.2.24. void SM_GetWindowOffsets(WindowType *w, int *hoffs, int *voffs)

Returns the current horizontal and vertical translation of the actual content region from the
virtual content region. If a window doesn’t have the SCROLLATTRIB attribute then the offsets are
always 0. For windows with scrollbars, all window elements are always set relative to the virtual
content region.

Actual Window Content Region

Virtual Window Content Region

hoffs

vo
ff

s

3.8.2.25. int SM_GetWindowWidth(WindowType *w) (Macro)

Returns the width (Xmax - Xmin + 1) of the argument window. This is the total width from border
edge - to - border edge. See also: SM_GetWindowDepth; SM_GetContentWidth;
SM_GetCanvasWidth.

3.8.2.26. char *SM_GetWindowTitle(WindowType *)

Returns the window title string for the argument window. This is a pointer to the actual string
and should be treated as read-only. See also: SM_SetWindowTitle; SM_NewWindow.

3.8.2.27. int SM_SetApplicationMenu(MenuType *m)

Sets the application menu to the menu pointer argument. The application menu bar is im-
mediately redrawn to reflect the new menu. See also: SM_NewWindow; SM_CreateMenu;
SM_AddMenuItem.

3.8.2.28. void SM_SetApplicationTitle(char *title)

Sets the string displayed in the application title bar to title. The display is immediately updated to
reflect the change. The existing string, if any, is freed.

3.8.2.29. void SM_SetCloseProc(WindowType *w, int (*proc)()) (Macro)

Sets the window w’s close window management event application procedure to the specified
function. This is an application function called when a window is closed and is called before the
system frees the window. The function proc must be an int function with a single argument, a
pointer to a window. When called, this pointer will be w and the system will be ready to close w.
Typically this routine frees application specific data attached to the window.
If the function proc returns a non-zero value, the window is not closed and the value gets
returned to the event loop as the return value from the SM_ProcessEvent function.

The TWS Window System Reference and Tutorial Release 4.0

39 Windows

3.8.2.30. int SM_SetContentColor(WindowType *w, ColorType *c)

Sets the window argument’s content region fill color to the color argument. The color c is
assumed to be from the system color table. If the window is the active window then it’s redrawn
immediately. See also: SM_GetContentColor; Color management.

3.8.2.31. int SM_SetContentRect(WindowType *w, RectType *r)

Change the size/position of the window’s content rectangle to r. The coordinates of the rectangle
should be in absolute device coordinates. The system recalculates the window borders, title bar,
and menu bar based on the new content rectangle size and position. If the window is the active
window then the window is immediately redrawn. All window contents -- gadgets, graphics
canvas, etc. -- keep their same positions relative to the content origin (upper-left corner).

3.8.2.32. void SM_SetDrawProc(WindowType *w, int (*proc)()) (Macro)

Set the window argument’s draw window management event procedure to the procedure
argument. This is the procedure that draws the window’s content region.

3.8.2.33. void SM_SetGadgets(WindowType *w, GadgetType *g) (Macro)

Sets the window’s gadget list to the GadgetType pointer g. Does not check if there is already a
gadget list attached to the window -- if one is, it’s replaced by g. See also: SM_GetGadgets;
SM_AddGadget.

3.8.2.34. void SM_SetGainFocusProc(WindowType *w, int (*f)()) (Macro)

Sets the function called whenever the window w becomes the active window to the function f. f
must be an int function with a single argument, a pointer to a WindowType.

3.8.2.35. void SM_SetLoseFocusProc(WindowType *w, int (*f)()) (Macro)

Sets the function called whenever the window w goes from being the active window to not being
the active window. f must be an int function with a single argument, a pointer to a WindowType.

3.8.2.36. int SM_SetMenu(WindowType *w, MenuType *m)

Sets the window’s menu to the menu argument. If the window is the active window then it is
redrawn and the window content region resized to accommodate the menu. See also:
SM_CreateMenu, SM_AddMenuItem.

3.8.2.37. void SM_SetRedrawFlag(WindowType *w, int flag) (Macro)

Sets the redraw flag of the argument window w to the value flag. Currently the only valid flags
are True and False. Set a window’s redraw flag to True whenever the window contents have
been changed while the window was not the active window. The system resets the redraw flag
after drawing the window.

3.8.2.38. int SM_SetRedrawProc(WindowType *w, int (*proc)()) (Macro)

Set the window argument’s redraw window management event procedure to the function
argument. This is the procedure that redraws the window’s content region whenever the window
is moved but not changed. By default, this procedure is the same as the draw procedure.

3.8.2.39. int SM_SetResizeProc(WindowType *w, int (*proc)()) (Macro)

Set the window argument’s resize window management event procedure to the procedure
argument. This is the procedure that draws the window’s content region whenever the window is
resized.

The TWS Window System Reference and Tutorial Release 4.0

40 Windows

3.8.2.40. int SM_SetUserData(WindowType *w, void *d) (Macro)

Sets the window’s user data field to the pointer argument. See also: SM_GetUserData.

3.8.2.41. int SM_SetWindow(WindowType *w)

Causes the window elements to be recalculated based on the size and position of the window’s
content region rect. The content region is specified in absolute device coordinates and can be set
using SM_SetContentRect. If the window is the active window it is immediately redrawn using
the window’s resize procedure.

3.8.2.42. int SM_SetWindowProc(WindowType *w, int (*f)()) (Macro)

Sets the window procedure to the argument function f. The window function is called once on
every pass through the event loop as long as the window is active. By default a window has no
window function; the application must supply one if necessary.

3.8.2.43. int SM_SetWindowScrollProc(WindowType *w, int which, int (*f)())

Sets the application callback function for the window scrollbar which attached to the window w.
which is a constant identifying which scrollbar to attach the function to: constants defined in
smtypes.h are VSCROLLBAR and HSCROLLBAR. The function f is an int function whose argument
is a pointer to a SliderType as described earlier in this section, and in the SliderType gadget
section.

3.8.2.44. int SM_SetWindowTitle(WindowType *w, char *c)

Sets the window’s title to the string argument. If the window is the active window the title is
redrawn. The system makes a copy of the string.

The TWS Window System Reference and Tutorial Release 4.0

41 Windows

3.8.3. Window Drawing Functions
Normally the window manager takes care of redrawing windows as necessary. For example,
when the active window is moved, the window manager automatically redraws any windows that
were exposed.
Sometimes an application needs to redraw a window (or part of one) explicitly for some reason.
The following functions are provided. See also: Graphics.

3.8.3.1. int SM_DrawAppTitle()

Draws the application title at the top of the screen. It is unlikely that an application program
would ever have to do this, since this title is established when the workspace is initialized by the
SM_OpenApplication function , and the title is automatically redrawn whenever the title is
changed by SM_SetWindowTitle.

3.8.3.2. int SM_DrawBorder(WindowType *w)

Regenerate the borders of the window w. Does not affect the window content and doesn’t check
if the window is the active window. If it isn’t, the border for window w may be drawn over
windows higher in the stacking order. Always returns 0.

3.8.3.3. int SM_DrawWindow(WindowType *w)

Generate the content of an application window by calling the application window’s draw
procedure. Normally the system handles all drawing and redrawing of a window’s contents as
necessary (for example, when the window becomes the active window, or some part of the win-
dow is exposed). The window must already be opened (see SM_OpenWindow) and must be
the active window.

3.8.3.4. int SM_EraseContent(WindowType *w)

Clears the content region of the window argument to the content background color. The window
must already be opened and must be the active window. See also: SM_DrawContent.

3.8.3.5. int SM_MoveWindow(WindowType *w, int dx, int dy)

Move the argument window w by dx pixels horizontally and dy pixels vertically. Positive values
move the window to the right and down, negative values to the left and up. The window must be
the active window. Returns 0 on success, any other value is an error.

3.8.3.6. int SM_RedrawWindow(WindowType *w)

Redraws the window content by calling the argument window’s redraw procedure. The window
must be the active window. Normally the window system takes care of redrawing the window
contents when necessary, such as when the window is moved or exposed. An application should
therefore have rare need to call SM_RedrawWindow directly. Returns 0 on success.

3.8.3.7. int SM_RefreshGadgets(WindowType *w)

Causes all gadgets attached to window w to be redrawn. The window must be the active
window. Returns 0 on success, any other value indicates w was not the active window. See also:
Gadgets.

3.8.3.8. int SM_ResizeWindow(WindowType *w, int dx, int dy)

Changes the window size and redraws the window at the new size. The window size is changed
by dx pixels horizontally and dy pixels vertically in the same manner as GR_InsetRect --
positive values reduce the window size in that direction, while negative values expand the
window. The window size adjusts symmetrically about its center.

The TWS Window System Reference and Tutorial Release 4.0

42 Windows

If the window is the active window then it’s redrawn immediately. See also: GR_InsetRect,
SM_SetContentRect, SM_MoveWindow.

The TWS Window System Reference and Tutorial Release 4.0

43 Windows

3.8.4. Miscellaneous Functions

3.8.4.1. int SM_BringToFront(WindowType *w)

Makes the window argument the active window and brings it to the top of the window stack. If
the window is already the active window then nothing changes. The window must be created and
already opened by calls to SM_NewWindow and SM_OpenWindow.

3.8.4.2. WindowType *SM_FocusWindow()

Returns a pointer to the active window. There is always guaranteed to be a active window
anytime TWS is running; if no application windows are open then the workspace window is
returned.

3.8.4.3. int SM_FreeWindow(WindowType *w)

Releases all memory associated with the window w. Does not call the window’s close procedure,
if any. This function is mainly used to free temporary windows that have been cast from gadgets.
See also: SM_GadgetToWindow.

3.8.4.4. int SM_IsFocus(WindowType *w)

Returns True if the window w is the active window, False otherwise. See also:
SM_CurrentWindow.

3.8.4.5. int SM_IsMaximized(WindowType *w) (Macro)

Returns True if the argument window has been maximized, False otherwise.

3.8.4.6. int SM_IsMinimized(WindowType *w) (Macro)

Returns True if the argument window is minimized (reduced to an icon), False otherwise.

3.8.4.7. int SM_LockWindow(WindowType *w) (Macro)

Sets the argument window as ‘locked’, which means that if the window is the active window, no
other window can become active until the window is either unlocked or closed. The window must
be created but doesn’t have to be open, and doesn’t have to be the active window when
SM_LockWindow is called. If a window is ‘locked’ while inactive then it doesn’t affect program
operation until the window becomes active. See also: SM_UnlockWindow.

3.8.4.8. int SM_nDisplayBits()

Returns the number of bits per pixel supported in the current display mode. Typically this will be
4 (for standard EGA/VGA), 8 (for extended VGA at 256 colors), 15 (for 32k truecolor systems), or
24 (for 16M truecolor systems).

3.8.4.9. int SM_nDisplayPlanes()

Returns the number of color planes supported by the hardware graphics device in the current
display mode.

3.8.4.10. int SM_SaveContent(WindowType *w)

Writes the contents of the argument window’s graphics canvas to backing store. The window
must be the active window and must have a graphics state and canvas rectangle. Normally the
window system takes care of saving a window’s graphics canvas as necessary. If the window
doesn’t already have a backing file, one is created. If the window does have a backing file its
contents are replaced by the new image. Returns 0 on success, any other value indicates failure.

The TWS Window System Reference and Tutorial Release 4.0

44 Windows

3.8.4.11. int SM_StringWidth(char *string, FontType *font, int style)

Returns the width in pixels of string if it were drawn using the font font with facing style style.
style is one of the text style constants TXTNORMAL, TXTBOLD, TXTITALIC, TXTUNDERLINE,
TXTSTRIKEOUT, and TXTPROPORTIONAL, which may be ORed together as appropriate.

3.8.4.12. int SM_UnlockWindow(WindowType *w) (Macro)

Resets the lock field of the window. This allows other windows in the program to be selected.
See also: SM_LockWindow.

3.8.4.13. int SM_WindowExists(WindowType *w)

Returns True if the window argument is anywhere on the stack of windows, False otherwise.

3.8.4.14. int SM_WindowRegion(WindowType *w, int x, int y)

Returns a value indicating which of the window decorations the point (x,y) is in, such as the
titlebar, the content region, or one of the window controls. The region macros are in the file
smtypes.h; they are:

Macro Value Region
MOVE_REGION 9 Window title bar

CLOSE_REGION 10 Close button
MENU_REGION 11 Window menu bar

BASE_MENU_REGION 12 Application menu bar

WINDOW_REGION 13 Anywhere within the window’s border
MAXIMIZE_REGION 14 Maximize button

CONTENT_REGION 15 Content rectangle
WORKSPACE_REGION 16 Not in the window but inside the workspace content

rectangle

MINIMIZE_REGION 18 Minimize button
CANVAS_REGION 19 Graphics canvas rectangle

UPLEFT 5 Upper left drag border
UPRIGHT 6 Upper right drag border

DOWNLEFT 7 Lower left drag border
DOWNRIGHT 8 Lower right drag border

 The point (x,y) is in device coordinates (upper-left corner of the screen is (0,0)). This is
compatible with the coordinates returned by the SM_GetNextEvent function.
If a window doesn’t have a particular region then that value can’t possibly be returned. For
example, a DIALOG window has no drag borders. If SM_WindowRegion returns
WINDOW_REGION for a DIALOG style window, then the point must be on the border.

Example:

#include <smtypes.h>
#include <smwindow.h>
char *regions[] = {““,”“,”“,”“,”“,”UPLEFT”,”UPRIGHT”,”DOWNLEFT”,”DOWNRIGHT”,
 ”MOVE”,”CLOSE”,”MENU”,”APPLICATION MENU”,”WINDOW”,
 ”MAXIMIZE”,”CONTENT”,”WORKSPACE”,”“,”MINIMIZE”,”CANVAS”};
int loc;
EventType event;

The TWS Window System Reference and Tutorial Release 4.0

45 Windows

:
:
while (True) {

SM_GetNextEvent(&event);
loc = SM_WindowRegion(w, event.CursorX, event.CursorY);
fprintf(stderr, “Graphics locator is in the %s region\n”,regions[loc]);

}

3.8.4.15. WindowType *SM_WorkspaceWindow()

Returns a pointer to the base, or workspace, window, which is always the lowest window in the
window stack. The application must call SM_Init and SM_OpenApplication before using this
function.

The TWS Window System Reference and Tutorial Release 4.0

46 Windows

3.9. Workspace Panels

There is a special kind of application window called a panel. For most application purposes, a
panel is just like a window. It has its own coordinate system, can contain user interface gadgets,
can have its own graphics state, etc.
What makes a panel special is the following:

• Panels are tiled with the workspace window. They can’t be moved and they can’t
obscure any other window, including other panels;

• Panels have only a depth and location. A panel’s location must be one of UP, DOWN,
LEFT or RIGHT. The panel’s width is all the way across the location edge. For
example, a DOWN panel with depth of 50 extends all the way across the bottom of
the screen, and from the bottom of the current workspace to 50 pixels up from the
bottom.

• Creating a panel shrinks the workspace content region correspondingly. Since
application windows are drawn within the workspace content, application windows
can never obscure a panel. This makes panels ideal for real-time, ongoing status
displays, like available memory and disk space, time of day clock, etc.

• An application can create panels but must never close them.

Other than the above, a panel is just like any other window (in fact PanelType is defined
internally as a WindowType). The following example creates a panel and puts a label into it:

#include <smwindow.h>

The TWS Window System Reference and Tutorial Release 4.0

47 Windows

int main(int argc, char *argv[])
{

PanelType *panel;
RectType r;
char memmsg[80];
int memleft;

SM_Init(argc, argv);
SM_OpenApplication(“Panel Demo”, NULL);

panel = SM_CreatePanel(60, DOWN);
memleft = coreleft();
sprintf(memmsg, "Mem Avail : %ld", memleft); r.Xmin = 10;
r.Ymin = 20;
r.Xmax = r.Xmin
 + SM_StringWidth(memmsg, SM_GetSystemFont(), TXTNORMAL);
r.Ymax = r.Ymin + SM_GetSystemFontHeight() + 4;
SM_CreateLabel((WindowType *)panel,

 &r,
 memmsg,
 NULL,
 ALIGNCENTER,
 False,
 False,
 True,
 (void *)memleft);

It’s important to remember what not to do with panels: Never attempt SM_MoveWindow,
SM_SetContentRect, SM_ResizeWindow, SM_CloseWindow, or SM_SetWindow on a
panel window. Some functions, like SM_SetWindowMenu, will have no noticeable effect
because a panel window won’t draw a menu even if one is attached to it. The function
SM_CloseAllWindows ignores panels so can safely be used. All other functions will accept a
panel window as an argument.

3.9.1. PanelType *SM_CreatePanel(int size, int location)

Create and initialize a new panel size pixels deep at the workspace location location. location is
one of the directional constants defined in smtypes.h; LEFT, RIGHT, UP, or DOWN. size is the
number of pixels the panel extends in the opposite direction. The pointer returned from
SM_CreatePanel can be used as the window argument to most TWS functions.

The TWS Window System Reference and Tutorial Release 4.1

48 Events

4. The TWS Event System
The TWS graphical user interface is an event-driven system. Events can originate externally in
the form of user keystrokes or mouse actions, or internally (clock events). The TWS event
manager notices events as they occur and dispatches them to the appropriate objects.
A TWS application is never simply sitting around, waiting for the user to do a specific thing, like
entering a file name2. Rather, an event driven application asks, “What should I do if the user
enters a file name?” and provides the appropriate code to respond.
At the top level, the TWS event loop is quite simple:

#include <smevent.h>
EventType event;
int msg;

while (True) {
SM_GetNextEvent(&event);
msg = SM_ProcessEvent(&event);

}

SM_GetNextEvent retrieves a pending event, if any, from the system event queue and copies
it into event. SM_ProcessEvent takes an event and processes it through the window system,
window gadgets and menus, and background functions.
SM_ProcessEvent returns a message value. The value depends on how the event was
processed. It could be an application-specific value if a gadget or window callback was executed,
a window manager event constant if a window management task was done, or simply an echo of
the hardware event type.

4.1. Data Types

typedef struct _eventtype
{
 uint Region; /* Window region where cursor is */
 EventFlagsType Type; /* Event type (keypress, etc.) */

 short ASCII; /* ASCII code for keyboard press */
 short ScanCode; /* Scan code for keyboard press */
 short ShiftState; /* Keyboard shift state */

 unsigned short Button; /* Which mouse button for press/release*/
 unsigned short ButtonState; /* Mouse button current state */
 unsigned short ButtonEvent; /* Convenience button event type */
 int CursorX, CursorY; /* Hardware Cursor position */
 int WinX, WinY; /* Window content cursor position */
 int GraphX, GraphY; /* Window graph canvas cursor pos */

 uint Time; /* Sys clock at event */
 long localtime; /* Time of day clock */

 void *EventWin; /* Window the mouse is 'in' */
 uint EventMsg; /* Event return message */
} EventType;

2Well, this isn’t strictly true. Sometimes the system takes control of the input for specific reasons. For example,

while a window is being dragged, all other system activity stops. Same for a pull-down menu. At the application level,
you might count a modal dialog as “sitting around waiting.” Kinda depends on your point of view.

The TWS Window System Reference and Tutorial Release 4.1

49 Events

4.2. Getting Events
Each time the SM_GetNextEvent function is called the EventType argument is updated. Some
fields are updated every time, other fields are updated only for certain event types. The fields
that are always current are:
Type: This is the hardware-layer event description. The value in this field is always one of the
following constants:

Event Constant Value Description
NONE 0 No “active” event occurred.

BUTTONMOTION 0x01 The cursor moved since last queried.
BUTTONPRESS 0x02 A mouse button was pressed. The Button field

contains which button was pressed.

BUTTONRELEASE 0x04 A mouse button was released. The Button field
contains which button was released

KEYPRESS 0x08 A keyboard key was pressed. See the ASCII and
ScanCode fields to find out which one.

DRAGMOTION 0x80 The cursor moved while at least one mouse button
was active. The ButtonState field shows which
buttons are active.

CLOCKEVENT 0x20 A ‘tick’ from the clock timer occurred.

BUTTONPRESS and BUTTONRELEASE events have priority over BUTTONMOTION and
BUTTONDRAG events. CLOCKEVENT events have the highest priority; however, if a button or key
event occurs at the same time as a clock event, TWS buffers the button event and picks it up on
the next pass. The system doesn’t allow the possibility of simultaneous key and mouse events,
but will queue them in sequence.
ShiftState: Shows the current state of the keyboard shift keys, such as Shift, Alt, Num-Lock and
so forth. Each bit in the field corresponds to a key state, described by the following constants.
The constants ending in ...DOWN indicate a state transition occurred for that key. Those ending
in ...ON indicate that the mode is active. Test for more than one condition by ORing the
constants as needed. The following example sets a trigger if the right and left shift keys are both
pressed:

SM_GetNextEvent(&event);
trigger = event.ShiftState & (RIGHTSHIFTDOWN | LEFTSHIFTDOWN);
if (trigger) then {

...

State constant Value Definition
RIGHTSHIFTDOWN 0x0001 The right shift key is pressed

LEFTSHIFTDOWN 0x0002 The left shift key is pressed

CTRLDOWN 0x0004 The CTRL key is pressed
ALTDOWN 0x0008 The ALT key is pressed

SCROLLOCKON 0x0010 SCROLL LOCK is active
NUMLOCKON 0x0020 NUMLOCK is active
CAPSLOCKON 0x0040 CAPS LOCK is active

INSERTON 0x0080 INSERT is active
LEFTCTRLDOWN 0x0100 The left CTRL key was pressed

The TWS Window System Reference and Tutorial Release 4.1

50 Events

LEFTALTDOWN 0x0200 The left ALT key was pressed

SYSREQDOWN 0x0400 The SYSREQ (Print Screen) key is pressed
CTRLNUMLOCK 0x0800 The CTRL-NUMLOCK sequence is active

SCROLLOCKDOWN 0x1000 The SCROLL LOCK key was pressed
NUMLOCKDOWN 0x2000 The NUMLOCK key was pressed
CAPSLOCKDOWN 0x4000 the CAPS LOCK key was pressed

INSERTDOWN 0x8000 The INSERT key was pressed

ButtonState: The current state (pressed or not) of the mouse buttons. The state of the mouse
button isn’t related to a mouse button event (BUTTONPRESS or BUTTONRELEASE). Any
combination of the following constants are possible in this field. For example, to perform some
action as long as the right mouse button is held by the user,

while (1) {
SM_GetNextEvent(&event);
if (event.ButtonState & RIGHTMOUSEBUTTON) {

...
}

}

ButtonState Constant Value Description
LEFTMOUSEBUTTON 0x10 The left mouse button is pressed.

RIGHTMOUSEBUTTON 0x20 The right mouse button is pressed.

MIDDLEMOUSEBUTTON 0x40 The middle mouse button is pressed. This
value can’t be returned for a two-button
mouse.

CursorX, CursorY: This is the screen position for the mouse cursor in absolute device
coordinates.
Time: This is the value of the system timer. The system timer is a continuously-running counter
that increments 18.2 times per second. The values repeat every 30 minutes or so. This has no
relationship to the time of day. It’s principle use is to determine if two events occur sufficiently
close together (or far apart). The following example determines that a double-click has occurred
if two button presses come within a half-second of each other* :

firsttime = 0;
while (1) {

SM_GetNextEvent(&event);
if (event.Type == BUTTONPRESS) {

if (firsttime) {
if (abs(firsttime - event.Time) < 9) {

doubleclick = True;
}
firsttime = 0;

}
else {

firsttime = event.Time;
}

}
}

* Note that this is a necessary but insufficient condition for detecting traditional double-clicks. In addition, we

would have to see that the cursor position moved less than some delta amount, and that the same button was involved in
both presses.

The TWS Window System Reference and Tutorial Release 4.1

51 Events

For event Types of NONE or CLOCKEVENT, the fields above are the only ones updated. The
remaining fields are not modified at all so retain their values from the last time they were set.
This can be useful as well. For example, the Region field is updated when the cursor moves into
a particular region of a window. If the cursor is never moved afterward, the Region field will not
change, and it retains the correct value.
Any other events cause the remaining fields to be updated too. These fields are described below:
Region: The window area where the mouse cursor was when the event occurred. Only areas of
the active window and the workspace are tested. If the cursor is over an inactive window, this
field will contain the WORKSPACE_REGION constant. Region values are always the most specific
possible. For example, the CANVAS_REGION is within the CONTENT_REGION, which is inside the
WINDOW_REGION, so the value will only be CONTENT_REGION if the cursor is inside the
window content region and not in the canvas region.

Region Constant Value Description
UPLEFT 5 Active window upper-left resize handle

UPRIGHT 6 Active window upper-right resize handle

DOWNLEFT 7 Active window lower-left resize handle
DOWNRIGHT 8 Active window lower-right resize handle

MOVE_REGION 9 Active window title bar (moves window when
grabbed)

CLOSE_REGION 10 Active window close button

MENU_REGION 11 Active window menu
BASE_MENU_REGION 12 Application menu (workspace)

WINDOW_REGION 13 Inside the active window border
MAXIMIZE_REGION 14 Active window maximize button
CONTENT_REGION 15 Inside the active window content region

WORKSPACE_REGION 16 In the workspace content
MINIMIZE_REGION 17 Active window minimize button

CANVAS_REGION 18 Active window graphics canvas
APP_TITLE_REGION 19 Application (workspace) title bar

EventWin: The window the cursor was in when the event occurred. This can be any window,
including the workspace and icons. Remember, though, that the window in the EventWin field is
not necessarily the window that the Region values came from; Region values are always relative
to the active window.
WinX, WinY: Mouse cursor coordinate relative to the content region of the active window. Since
the cursor is not necessarily in the active window, these values could be negative, or greater
than the content boundary.
GraphX, GraphY: Mouse cursor coordinate relative to the active window’s graphics canvas. The
cursor isn’t necessarily inside the graphics canvas, so these values may be outside the canvas
boundary. If the window doesn’t have a graphics canvas then these two values are undefined.
ASCII, ScanCode: For KEYPRESS events, contain the character and keyboard scan code,
respectively, for the key(s) pressed. For a normal alphanumeric key, ASCII contains the character
and ScanCode is ignored. If ASCII is 0 then ScanCode contains the code for a special key or key
combination, such as a function key, Home key, or Alt-key combination.
localtime: Only valid for the CLOCKEVENT event type, this is the number of system clock ‘ticks’
since midnight. The system ticks 18.2 times per second. The TWS function SM_TimeOfDay
converts this value to the time in hours, minutes and seconds. This value is not updated for any
other event types.

The TWS Window System Reference and Tutorial Release 4.1

52 Events

Button: For BUTTONPRESS and BUTTONRELEASE events, contains which button was used. Uses
the same constants as the ButtonState field described earlier. Not updated for any other event
types. Note that this is the button that made the transition; the button will be one of the active
buttons in the ButtonState field only for a BUTTONPRESS event.
ButtonEvent: This is a convenience field which reports button press, release, and drag events
in terms of which button was involved. It’s created by ORing the Type field with the Button or
ButtonState fields. The resulting values are captured in the constants shown below. For example,
something like the following captures a middle-button press:

SM_GetNextEvent(&event);
if (event.ButtonEvent == MIDDLEBUTTONPRESS) {

DoSomething();
}

ButtonEvent Constant Value
LEFTBUTTONPRESS 0x12

RIGHTBUTTONPRESS 0x22
MIDDLEBUTTONPRESS 0x42
LEFTBUTTONRELEASE 0x14

RIGHTBUTTONRELEASE 0x24
MIDDLEBUTTONRELEASE 0x44

LEFTBUTTONDRAG 0x81
RIGHTBUTTONDRAG 0x82

MIDDLEBUTTONDRAG 0x84

This value is updated only for BUTTONPRESS, BUTTONRELEASE, and DRAGMOTION event types.

4.3. TWS Event Handler
After getting an event with SM_GetNextEvent the application typically passes it on to the
SM_ProcessEvent function. This function is the workhorse of the event system, passing the
event to window manager event handlers, window gadget event handlers, window procedures
and background procedures as appropriate for a particular event.

The TWS Window System Reference and Tutorial Release 4.1

53 Events

Grab On? Yes

Window Manager

Active Window
 Gadgets

Panel Gadgets

Active Window
 Callback

Return

Return

Return

Background
Procedures Return

Handled?

Handled?

Handled?

Return

SM_ProcessEvent()

The integer value returned by SM_ProcessEvent depends on how the event was handled.
Generally there are four sources for event processing return values3 :
Window Procedures: A window procedure (the Active Window Callback in the diagram) is an
application function that can be attached to a window. If the active window has a window
procedure, SM_ProcessEvent calls it. If a window procedure is called, SM_ProcessEvent
returns its return value.
Gadget callback functions: For most gadgets the application supplies a function that is called
whenever the user activates the gadget. This function is known as a callback. If an event triggers
a gadget, SM_ProcessEvent returns the value returned by the gadget’s callback function. Only
the active window and panel window gadgets can be triggered.
Window manager events: When the active window is moved, resized, etc.,
SM_ProcessEvent returns a constant value identifying what kind of window management was
performed. The constants are:

Event Constant Value Description
EV_WINMOVE 101 The active window was moved.

EV_CHANGEWIN 104 The active window was changed, probably by bringing a
lower window to the top.

EV_NEWWIN 105 A new window was created.
EV_CLOSEWIN 106 A window was closed. This may result in a new active

window.
EV_WINSIZE 107 The active window was resized.

EV_MINIMIZE 102 The active window was minimized (reduced to icon).

EV_MAXIMIZE 103 The active window was maximized.

3 These values are often called messages by other user interface systems. Since TWS has a separate unrelated

messaging system, we use the more generic term of ‘value’.

The TWS Window System Reference and Tutorial Release 4.1

54 Events

EV_RESTORESIZE 108 The active window was restored to its normal size from an
icon or maximized state.

EV_CHANGEFOCUS 109 There was a change in the focus gadget in the current active
window.

An application can get more information about the results of a window management event by
querying the window manager or the active window. For example, an application can discover
which window became the active window by watching for EV_CHANGEWIN events, then calling
SM_FocusWindow to get a pointer to the new active window.
Menu selection: Selecting from a window or the application menu usually ends up calling an
application function at some point. If the event is handled by the menu system, the final menu
return value is passed back through the SM_ProcessEvent return value. In the diagram, menu
selections are included in the window manager events block.
Hardware events: This is simply a copy of the Type field from the event struct itself. This
means that something happened, like a button press or keyboard press (or nothing at all if the
value is 0), but nothing in the application or window manager was interested in it.

As soon as the event has been handled, SM_ProcessEvent returns. A non-zero return value for
a gadget or window manager event (like a menu) indicates that the event was handled. Event
grabs are a little different; see the chapter on Event Grabs that follows.
By choosing callback function return values carefully, the application can accurately track local
(gadget and window-level) activities at a global (application event loop) level while maintaining
strict modularity. The application can even defer processing back to the event loop by designing
callbacks to only return unique values, then testing those values in the main loop. Some other
window manager systems use this method extensively as it opens the door for applications that
can be modified at runtime using resource files. Specific details are beyond the scope of this
document.
To prevent confusion between application and window manager message values, application
values should always be greater than 256.
SM_ProcessEvent only returns one value for any one event. In cases where an event could be
interpreted more than one way the following rules are used:

• Window manager handlers, menus, and gadgets cannot conflict since they’re all in
separate screen areas;

• If an application menu (attached to the workspace) and the active window’s menu
have accelerator keys in common, the active window has priority. See the Menus
chapter for more details;

• If gadgets overlap, the gadget most recently created gets the first opportunity to
process an event;

• If the active window has a window procedure, that function is called almost every pass
through SM_ProcessEvent, and is called even if other handlers have already
responded to the event. When the window procedure gets the event, the EventMsg
field contains the code for whatever handling was already done with the event, or 0 for
no prior handling. This includes codes for window manager events, gadget and menu
callbacks. So the window procedure mechanism provides yet another way to provide
extra global response to local event handling. However, realize that at this point the
prior local processing is already complete (on a window resize, for example, the
window has already been redrawn and the application resize procedure, if any, has
been called).

The TWS Window System Reference and Tutorial Release 4.1

55 Events

4.4. Background Procedures
A background procedure is similar to a window function except that a background procedure may
be called even when its parent window isn’t active. Processes that can or should happen in the
background, such was printing large files or displaying a time of day clock, are good candidates
for background procedures.
The data structures for background procedures look like the following:

typedef int (*BackgroundProcType)(WindowType *, EventType *) ;
typedef unsigned char EventFlagsType;
typedef int BackgroundProcIDType;

/*
** Application event handler list node
*/
typedef struct _enode {
 EventFlagsType events; /* Types of events that trigger */
 WindowType *w; /* Parent window of this function */
 int (*evfunc)(WindowType *w, EventType *e);
} BackgroundProcNodeType;

An array of BackgroundProcNodeType-s is initialized by the application and contains all the back-
ground procedures for a program. The events field stores the kinds of system events the
procedure should respond to. This is tested at the system level before the evfunc (the
application-supplied background function) is called, so the function doesn’t have to test this itself.
The window w is the ‘parent’ window for the function. evfunc is the application function that is
called when the background procedure is triggered. It takes two arguments, a window pointer
and an event pointer. The window passed to the background procedure is w, the parent window
of the procedure. The event e is the event that occurred which triggered the background
procedure call.
A function is added to the background procedure list with the SM_RegisterBackground-
Procedure function. This function is passed a “parent” window for the background procedure,
the application procedure to be called, and the event type(s) that must occur for the background
procedure to be called:

WindowType *w;
int MyHandlerFunction();

id = SM_RegisterBackgroundProc(w, MyHandlerFunction, CLOCKEVENT);

Once added, the background procedure is called once on every pass through the event
processing loop in the SM_ProcessEvent function if the type of event matches the event
type(s) the background procedure is interested in. The background procedure is passed a pointer
to its parent window, and a pointer to the EventType struct that was passed to the
SM_ProcessEvent function. Note that the background procedure receives control after window
management (moving, resizing, etc.), window gadget, and window callback procedures have had
a crack at the event.
Nothing else can happen while the background procedure is executing so processing should be
done as quickly as possible.
The following additional event constants that are especially useful when registering a background
procedure. These give control over when the background procedure can be called based on the
state of the handler’s parent window. They are:

Event Constant Description
ACTIVEONLY Call the background procedure only if its parent window is active

INACTIVEONLY Call the background procedure only if its parent window is not
active

The TWS Window System Reference and Tutorial Release 4.1

56 Events

NOTOBSCURED Call the background procedure only if its parent window is
completely visible. If the parent window is active then it can’t be
obscured and the handler function is called. If the parent window is
not active then the handler function is called only if the parent
window is not covered at all by any other window.

ALLEVENTS The handler doesn’t care what the event is, call it regardless.

Background procedures aren’t limited to these event types -- a background procedure can be
registered to respond to any event type. For example, you could write a background procedure
that is called when a mouse button is pressed. The procedure would then be called every time
the button is pressed, regardless of which window is active.
Event types can be ORed as necessary and as makes sense, for example:

int MyHandlerFunction(WindowType *w, EventType *evnt);
/*
**
*/
id = SM_RegisterBackgroundProc(w, MyHandlerFunction, ALLEVENTS | NOTOBSCURED);

This will cause the system to call MyHandlerFunction on every pass through the event loop as
long as the window w is not covered by another window. This is useful when you want to draw
into an inactive window, since the TWS system doesn’t clip obscured windows properly.
It’s important to remember to unregister background functions when they’re no longer needed. A
handler event can unregister itself.

4.4.1. Background Procedure Example

The following example shows how an application could set up a ‘Print’ button to print a large file
in the background. We assume the existance of a user function called PrintBuf which outputs a
block of text to the printer. We also assume that the application has attached a pointer to an
Editstring gadget to the button’s data field, and that this string contains the name of the file to
be printed.
As is common in TWS applications, we define a structure to contain application-specific
information:

typedef struct {
FILE *printfile;
BackgroundProcIDType bgid;
/* anything else that’s necessary */

} WindowData;

When the application creates the window that contains the ‘Print’ button, it must attach a pointer
to an instance of our WindowData struct to it:

WindowType *printdialog;
WindowData data;
ButtonType *printbutton;
RectType dialogrect, brect;
EditstringType *edstr;
/*
** Code to initialize the ‘data’ struct and dialog rectangle omitted ...
** Create the print dialog window and attach ‘data’ to it
*/
printdialog = SM_NewWindow(&dialogrect,
 “Print”,
 DIALOG,
 NULL,
 (void *)&data);
/*
** Code to create the editstring and set up a rectangle for the button omitted ...
** Create the button to start printing and attach the editstring

The TWS Window System Reference and Tutorial Release 4.1

57 Events

** and print callback function to it
*/
printbutton = SM_CreateButton(printdialog,
 &brect,
 “Print”,
 (void *)edstr,
 PrintButtonCallback);

The ‘Print’ button’s callback is set up:

int PrintButtonCallback(ButtonType *b)
{

EdiststringType *string;
WindowData *data;
WindowType *w;

string = (EditstringType *)SM_GetButtonData(b);
if (string) {

/*
** Open the file and attach the file pointer to the ‘window data’
** structure. We assume that this is an application data structure
** that holds the file to be printed, among other things
*/
w = SM_GetGadgetWindow(b);
data = (WindowData *)SM_GetUserData(w);
data->printfile = fopen(SM_GetEditstringString(string),”r”);
/*
** Register a background procedure to do the actual printing.
** Save the id of the background procedure so we can unregister it later
*/
data->bgid = SM_RegisterBackgroundProc(w, PrintProc, ALLEVENTS);
return PRINTING;

}
return PRINTERROR;

}

The background procedure itself is equally simple:

int PrintProc(WindowType *w, EventType *event)
{

WindowData *data;
unsigned char buffer[512];
int nbytes;

data = (WindowData *)SM_GetUserData(w);
if (nbytes = fread(buffer, 1, 512, data->printfile)) {

PrintBuf(buffer, nbytes);
}
else {

/*
** The read returned 0, either end of file or error. Close the
** file and remove this background procedure
*/
fclose(data->printfile);
SM_RemoveBackgroundProcedure(data->bgid);

}
return 0;

}

A couple of points about the example and background procedures in general:

• Notice how the window is the common element for passing data around in the
application. Windows know about the gadgets that are attached to them, but gadgets
likewise know what window they’re attached to. This circular referencing means that
the parent window of an object is always accessible from the object.

The TWS Window System Reference and Tutorial Release 4.1

58 Events

Window

Generic
Gadget

Generic
Gadget

Specific Gadget Specific Gadget

The illustration shows the relationship between windows and gadgets.
• The window argument to the background procedure has nothing to do with the active

window on the screen. In fact the window doesn’t even have to be displayed. In large
part, the window argument is a mechanism for passing data to the background
procedure (e.g., the ‘WindowData’ in the example);

• Background procedures can remove themselves. This is perfectly normal and even
common behavior. Remember, though, that the background procedure itself doesn’t
know what its ID is, so the application must design in a way to tell it. This is done
through the ‘WindowData’ variable in the example;

• The PrintButtonCallback function returned values indicating success or failure. This
isn’t success or failure of the print job itself, only whether or not there was a filename
string available. In real life, an application would perform a lot more error checking
than this. The value will eventually find its way back to the main event loop as the
return value from the SM_ProcessEvent function;

• The TWS Messaging system is useful for communicating from background procedures
to the rest of the application, or for any asynchronous state changes in the system.

• Background procedure return values are ignored. So how could a background
procedure tell the main program that it has finished its work? The TWS messaging
system is one way. By defining some message and id constants:

#define MAINPROC 257
#define PRINTBKGDPROC 258
#define PRINTSTART 1001
#define PRINTDONE 1002
#define PRINTERROR 1003

and adding message posting and retrieving in the proper places, parts of the program
can broadcast what they are doing, and other parts of the program can tune in. For
example, the background procedure could post a message when printing is done:

*/
fclose(data->printfile);
SM_RemoveBackgroundProcedure(data->bgid);
SM_PostMessage(PRINTDONE, PRINTBKGDPROC, MAINPROC, NULL);

The application can then watch for PRINTDONE messages. Let’s assume the
MAINPROC is where the main application event loop is:

MessagePacketType msgpacket;

while (1) {
SM_GetNextEvent(&event);
SM_ProcessEvent(&event);
if (SM_GetMessageFor(MAINPROC, &msgpacket)) {

switch(SM_GetMessageType(&msgpacket)) {
case PRINTDONE :

SM_OKDialog(“Print job is done”);
break;

case PRINTERROR :
....

The TWS Window System Reference and Tutorial Release 4.1

59 Events

Alternative methods include setting global flags, or setting flags in global data
structures and periodically polling those values. See the Messaging chapter for more
information.

4.5. Event Grabs
Sometimes an application program needs to process events with minimal intervention from the
standard event processor. A simple example would be to allow the user to click on any portion of
the screen without changing the active window. One way to do this would be to call
SM_GetNextEvent but never call SM_ProcessEvent. While this works, it also causes all
background processing to stop until the next SM_ProcessEvent call.
Another way is to set an event grab. A grab is simply a message that tells the event manager not
to process the event itself because the application will take care of it. However, background
procedures are called. An application sets pointer and keyboard grabs using
SM_SetMouseGrab and SM_SetKeyboardGrab.
The mouse or keyboard is either grabbed or not — nesting or hierarchies of grabs aren’t
supported. If a grab is already set then setting it again has no affect. Setting and releasing event
grabs is global to an application.

4.6. Printscreen Event
TWS provides special handling for a Printscreen event. The user triggers this event by pressing
the Control and Printscreen keys simultaneously (Ctrl-PrntScrn). The application can register a
special function with the event system to handle this. The printscreen event handler function is a
void function that takes three arguments: a pointer to a WindowType, a pointer to a RectType,
and a character string. The application registers this function and the arguments to pass to the
function using the SM_SetPrintscreenProc function:

#include <smwindow.h>
#include <smtypes.h>
void PrntScrn(WindowType *w, RectType *r, char *fname);
/* ... */
SM_SetPrintscreenProc(NULL, NULL, "winscreen.pcx", PrntScrn);

As shown above, if the printscreen function isn’t interested in any particular window or rectangle
region, those parameters can be NULL. In a typical robust application, the PrintScreen procedure
would probably open a dialog prompting for various information -- a file name, printer or file
type, etc., but in fact there are no restrictions on what the function may do.
The default handling for the Printscreen event is to do nothing. TWS provides several utility
routines for handling screen printing in particular ways -- see the Utilities chapter for information.

4.7. Interface Functions smevent.h

4.7.1. int SM_CallBackgroundProcs(WindowType *w, EventType *evnt)

Causes the background procedure manager to scan through the pending background procedures
and call the ones whose parent window and event mask fields are suitable to window w and
event evnt (see the discussion above). It would be unusual for an application to call this function.
Returns the function return value from the last background procedure executed (more than one
background procedure could be executed).

4.7.2. int SM_GetEventButtons(EventType *event)

Returns the buttons field from the event structure argument.

The TWS Window System Reference and Tutorial Release 4.1

60 Events

4.7.3. void SM_GetEventCursor(EventType *event, int *x, int *y)

Returns the x and y cursor location in global device coordinates from the event structure
argument.

4.7.4. void SM_GetEventKey(EventType *event, char *Ascii, char *scancode)

Returns the character and scan code for the event structure argument.

4.7.5. int SM_GetEventRegion(EventType *event)

Returns the region field from the event structure argument.

4.7.6. int SM_GetEventState(EventType *event)

Returns the state field from the event structure argument.

4.7.7. long SM_GetEventTime(EventType *event)

Returns the time of day in the format of SM_GetSystemTime from the event structure
argument.

4.7.8. unsigned char SM_GetEventType(EventType *event)

Returns the type field from the event structure argument.

4.7.9. int SM_GetEventWinevent(EventType *event)

Returns the manage_event field from the event structure argument.

4.7.10. int SM_GetMouse(WindowType *w, int *state, int *x, int *y)

Returns the current mouse location, relative to the content region of window w, in x and y, and
the mouse button state in state. The coordinates (x,y) are returned relative to the window w, so
may be negative. Mouse states are:

ButtonState Constant Value Description
LEFTMOUSEBUTTON 0x10 The left mouse button is pressed.

RIGHTMOUSEBUTTON 0x20 The right mouse button is pressed.
MIDDLEMOUSEBUTTON 0x40 The middle mouse button is pressed. This

value can’t be returned for a two-button
mouse.

The constants are defined in smevent.h.
SM_GetMouse returns True if the point (x,y) is within the window, False otherwise. See also:
GR_GetMouse.

4.7.11. EventType *SM_GetNextEvent(EventType *evnt)

Retrieve an event from the system event queue. The event parameters are copied into the evnt
struct, which is then processed by the SM_ProcessEvent function.

4.7.12. long SM_GetSystemTime()

Returns the current value of the system time of day clock in a packed format. The values for the
hour, minute and second can be extracted using the SM_TimeOfDay function.

The TWS Window System Reference and Tutorial Release 4.1

61 Events

4.7.13. int SM_InitBackgroundProcedures()

Initializes the background procedure internal data structures. Background procedures cannot be
registered before this function is called. Must be called at most once per program.

4.7.14. int SM_ProcessEvent(EventType *evnt)

Performs actions based on the event argument. SM_ProcessEvent determines the type of
event and branches accordingly. All system events, including window moving and resizing, menus
and so forth are handled through this function. The return value is either a user interface event
constant, a window manager event constant, or the return value of an application function.

4.7.15. BackgroundProcIDType SM_RegisterBackgroundProcedure (WindowType *w,
BackgroundProcType f, EventFlagsType fl)

Register an application function as a background procedure. w is the ‘parent’ window for the
background procedure, f is the function to be added to the background procedure list, and fl is
the event types the procedure is interested in.

4.7.16. int SM_RemoveBackgroundProcedure(BackgroundProcIDType id)

Takes the background procedure with id of id off the background procedure list. Usually the
background procedure will call this function to remove itself when it is no longer needed. id is the
identifier returned from the SM_RegisterBackgroundProc function. This effectively “halts” the
background process.

4.7.17. int SM_TimeOfDay(long time, int *hr, int *min, int *sec)

Given a time value as returned by SM_GetSystemTime, returns the hour, minute and second.
The function return value is the hr value. All values begin at 0 -- hour values are 0 - 23, minute
and second values are from 0 - 59.

4.7.18. void SM_SetPrintscreenProc(WindowType *w, RectType *r, char *fname, void
(*f)())

Sets the function, and the window, character string and screen region passed to the function,
whenever the Ctrl-PrntScrn key combination is pressed. The rectangle r is in global device
coordinates.
When the user presses Ctrl-PrntScrn, the function f is called with three parameters -- the window
w, the rectangle r, and the string fname. Any or all of the parameters may be NULL, and in fact
the function is not required to pay any attention to them.

#include <smwindow.h>
#include <smtypes.h>
void PrntScrn(WindowType *w, RectType *r, char *fname);
/* ... */
SM_SetPrintscreenProc(NULL, NULL, "winscreen.pcx", PrntScrn);

TWS provides some standard Printscreen event functions that can be called from the application
function f. See the Utilities chapter for more details.

The TWS Window System Reference and Tutorial Release 4.0

62 Menus

5. Menus

TWS supports one menu type, a pull-down menu bar immediately under the window title bar.
The menu bar is always the full width of the window. Items are displayed in the menu bar from
left to right in the same order they were added to the menu. Items are separated by the menu-
spacing value in the window defaults data structure. If there are more items in a window or
workspace menu than will fit, the items are clipped at the right edge of the menu bar.
Each menu item on a window menu can either trigger an application callback function or a pull-
down menu. Each item of a pull-down menu can trigger either a user function or another pull-
down menu, etc., etc.
A window can only have one menu. The menu can be activated only when the window has the
focus. The workspace window can also have a menu, which can be selected any time. The
workspace can only have a single menu as well. The width of a pull-down submenu’s display box
is determined by the longest item label at the time the menu is drawn.
A window menu item is selected by pressing the left mouse button over the menu label, or by
pressing the optional Alt-key accelerator (described later). The selected menu item is indicated by
a recessed rectangle around the label. If the item triggers a pull-down menu, the pull-down
menu is drawn directly under the window menu item, aligned with the left edge of the recessed
rectangle. As the mouse cursor is moved over a pull-down menu, the item under the cursor is
indicated by a raised rectangle. When the left mouse button is pressed over an item the
rectangle changes to recessed.
Unlike other window gadgets, menus are not destroyed when the window is closed. Once a menu
has been allocated and built it is not released unless the application specifically releases it. This
means one set of menus can be applied to any number of different windows. It also means that
changing a menu item changes that item in all windows that use that menu.

5.1. Data Types

typedef struct _menu {
 int type; /* Type of menu (action or submenu) */
 char *label; /* Menu label */
 int (*menuproc)(); /* Function if action item */
 struct _menu *submenu; /* Submenu if submenu item */
 struct _menu *next; /* Next item at this menu level */
 RectType region; /* Global boundary for this item */
 int active; /* If False menu item unavailable */
 short altkey; /* Key code that activates menu */
 char key; /* Normal-key equivalent for altkey */
} MenuType;

The type field is a constant describing the type of the menu item, either an ACTION_ITEM,
SUBMENU_ITEM or MENU_DIVIDER (these constants are defined in smmenu.h). label is the text
displayed for the menu item. If the menu is an ACTION_ITEM then menuproc is the application
function called when the menu is selected; otherwise it can be NULL. If the menu item is a

The TWS Window System Reference and Tutorial Release 4.0

63 Menus

SUBMENU_ITEM then submenu is a pointer to the next menu level; otherwise it’s NULL. region is
the rectangle surrounding the menu item’s sensitive region. This area is calculated when the
menu is activated -- when the menu isn’t active the value for region is unreliable. active is True if
the menu item can be selected by the user (the normal case), or if False the item can’t be
selected. If an item isn’t active it’s displayed in a grayed manner, and an attempt to select the
item fails.
A MENU_DIVIDER item is a sculpted line used to separate related groups of menu items. It
cannot be selected. The values for label, menuproc and submenu are irrelevant for a
MENU_DIVIDER menu item.

5.2. Menu Accelerator Keys
A window menu item can be selected via an Alt-key combination at the keyboard if the
application sets it up to do so. The application sets which Alt-key combination will be used by
prefixing a letter in the menu label string with an ampersand. The ampersand will be removed
and the menu character will be drawn with an underline. Pressing the Alt-key combination for a
window menu has the same effect as clicking on the item with the mouse.

MenuType *mainmenu, *filemenu;
mainmenu = SM_CreateMenu();
filemenu = SM_AddMenuItem(mainmenu, SUBMENU_ITEM, “&File”, NULL, filemenu);

The above example creates a menu mainmenu and adds the item “File” to it. When drawn, the
capital F will be underlined, and when a window containing the menu is active, pressing Alt-f on
the keyboard will activate the filemenu’s pull-down submenu.
Items on pull-down menus can also be selected by keyboard key, and the key is chosen the same
way. For pull-down menus, either the Alt-key or the normal key can be used:

SM_AddMenuItem(filemenu, ACTION_ITEM, “Save &as”, SaveWithNewName, NULL);

The statement above adds an item to the filemenu menu from the previous example. When the
filemenu pull-down menu is displayed, the ‘a’ in as will be underlined, and the menu function can
be activated by pressing Alt-a, or just a, on the keyboard.
Since only one window can be active at a time, menu Alt-keys for different window menus don’t
necessarily have to be unique. However, the application menu is always active, and if an active
window menu Alt-key is the same as an application menu Alt-key, the active window has
precedence.
Also, note that if the application wants to use Alt-key combinations, it must not use menu
accelerator keys. Alt-keys for menus are handled in the event processor function
SM_ProcessEvent, and the menus set a keyboard (and mouse) event grab on all pull-down
submenus. It would be very difficult to design an application that allowed menus and applications
to share the same Alt-key events.
By default, menu items have no key assigned to them and cannot be selected via the keyboard.
Pressing the Escape key closes all pull-down menus whether or not the Alt-keys are enabled.

5.3. Interface Functions smmenu.h

5.3.1. MenuType *SM_AddMenuItem(MenuType *m, int type, char *s, int (*f)(),
MenuType *sub)

Adds a new item to the end of the menu m, which is the head of a list of menu items returned by
SM_CreateMenu. The type of menu item is type, either ACTION_ITEM or SUBMENU_ITEM. The
item’s label is s. If the menu item is an ACTION_ITEM then f is the application function called
when the menu item is selected; otherwise it can be NULL. If the menu item is a
SUBMENU_ITEM then sub is the next menu level, otherwise it can be NULL.

The TWS Window System Reference and Tutorial Release 4.0

64 Menus

Returns a pointer to the new menu item.

5.3.2. MenuType *SM_CreateMenu()

Creates a new blank menu and returns a pointer to it.

5.3.3. int SM_DestroyMenu(MenuType *m)

Frees a menu and all resources associated with it. If a menu has submenus then all the
submenus are freed as well.

5.3.4. int SM_GetMenuActive(MenuType *m)

Returns True if the menu item m is active (selectable), False otherwise.

5.3.5. char *SM_GetMenuLabel(MenuType *m)

Returns the character string label for the menu item m. This is a pointer to the label string itself,
not a copy.

5.3.6. void SM_SetMenuActive(MenuType *m)

Makes the menu item m active. If it’s already active then nothing happens.

5.3.7. void SM_SetMenuInactive(MenuType *m)

Makes the menu item m inactive. If it’s already inactive then nothing happens. Inactive menu
items are displayed in a grayed manner and can’t be selected.

5.3.8. int SM_SetMenuLabel(MenuType *m, char *label)

Sets the label of menu item m to label. The existing menu label is discarded. label is copied to
the menu structure so doesn’t have to be static.

5.3.9. int SM_SetMenuProc(MenuType *m, int (*f)())

Sets the application function called when the menu item m is selected to f. The menu type for m
must be ACTION_ITEM for the menu function to be called. SM_SetMenuProc will not fail if the
type is not ACTION_ITEM but selecting the menu won’t call the function; it’ll cause the pull-down
menu to be activated. You can’t have it both ways.

5.4. Example
Unlike gadgets, menus are created independently of any window. Menus can be attached to
windows when they’re created, or can be added later. The same menu can be attached to any
number of windows. Since only one window can be active at any time, there is no ambiguity
when windows share menus. Unlike gadgets, which the window manager automatically destroys
when their parent window is closed, menus are never destroyed by TWS itself.
If a menu is attached to more than one window, those windows share the menu. Any change to
the menu in one window will affect all other windows that use the same menu.
The first step is to create the top level menus using the SM_CreateMenu function. Then add
items to the menus using the SM_AddMenuItem function:

MenuType *windowmenu;
MenuType *imagemenu, *colormenu;

windowmenu = SM_CreateMenu();
imagemenu = SM_CreateMenu();
colormenu = SM_CreateMenu();

The TWS Window System Reference and Tutorial Release 4.0

65 Menus

windowmenu will be the menu attached to the window, while the others will be items drawn in
the menu bar. The next statements establish this:

SM_SetWindowMenu(w, windowmenu);
SM_AddMenuItem(windowmenu, SUBMENU_ITEM, “Image”, NULL, imagemenu);
SM_AddMenuItem(windowmenu, SUBMENU_ITEM, “Colors”, NULL, colormenu);
SM_AddMenuItem(colormenu, ACTION_ITEM, “Linear Color”, SetLinearColor, NULL);
SM_AddMenuItem(colormenu, ACTION_ITEM, “Log Color”, SetLogColor, NULL);
SM_AddMenuItem(colormenu, ACTION_ITEM, “Linear BW”, SetLinearBW, NULL);
SM_AddMenuItem(colormenu, ACTION_ITEM, “Log BW”, SetLogBW, NULL);
SM_AddMenuItem(colormenu, ACTION_ITEM, “Truecolor”, SetTruecolor, NULL);
SM_AddMenuItem(colormenu, ACTION_ITEM, “Invert”, InvertColors, NULL);
SM_AddMenuItem(colormenu, ACTION_ITEM, “Reset”, RestoreColors, NULL);
SM_AddMenuItem(colormenu, ACTION_ITEM, “Brightness”, SetBrightness, NULL);

If an item will be a submenu of a menu, the submenu must be created first using
SM_CreateMenu. Whether a menu will be a window menu or a pull-down menu depends on
how the items are attached. In the above example, windowmenu has been attached to a window
with Image and Colors as its contents. Therefore windowmenu is the bar menu of the window,
and contains two submenu items. The colormenu menu contains eight ACTION_ITEM items, so
when colormenu is selected those items will be displayed in a pull-down submenu. The above
code reproduces the menu seen at the beginning of this chapter.
The ACTION_ITEM callback function is supplied by the application. It’s an int function with a
single argument, a pointer to a WindowType. When called, the argument will point to the window
the menu is attached to.
Note that since none of the labels in the example menus are flagged for Alt-key selection, the
user can operate the menus only with the mouse.

The TWS Window System Reference and Tutorial Release 4.0

66 Menus

6. Fonts
Through release 4.0, TWS had only rudimentary font handling abilities. The system maintained
four global fonts: the system font for gadgets and menus; title font for window and group
boundary titles; text font for the text display gadget; and icon font for icons.
Beginning with release 4.1, TWS adds an additional dimension to font control. Every gadget
instance can now be assigned a unique font. A font is specified as a text string, which is the
name of the disk file the font is stored in. The font name includes the file extension. For example,

SM_SetSystemFont(“hel12.fnt”);

sets the system font to the one in the file HEL12.FNT. Case doesn’t matter.
To manage the potentially complex font interactions and to minimize memory requirements for
multiple fonts, a dynamic font loading mechanism has been implemented for swapping font data
in from disk as necessary (See TWS Font Table).
A TWS application can use any MetaWINDOW font. All font files are assumed to be in the
directory specified by the FontPath configuration variable, or in the current default directory if
FontPath isn’t defined.

6.1. How TWS Uses Fonts
A font is an attribute of a gadget or window. When a gadget is about to be drawn, TWS takes
care of whatever is necessary to get the gadget’s font loaded into the system. All the application
has to do is define which font to draw the gadget with using the SM_SetGadgetFont function.
If not otherwise specified, gadgets use the system font.
An application can change the system resource fonts (system font, title font and icon font)
whenever it wants to. Because of the event-driven nature of a TWS application, any system font
changes would probably only be done when individual windows are created or become the focus
window.

6.2. TWS Font Table
Fonts for gadgets are stored internally in a font table. There is room for up to five application
fonts in the table, plus a system, title and icon font, all of which are stored in RAM.4
When a gadget requests to use a font, the font manager searches the table for the requested
font. If the font is already in the table TWS simply makes it the active font and returns.
If the font isn’t already in the table and there’s an unused slot in the table, TWS loads the font
from the directory specified by the FontPath configuration variable, or from the current directory
if the FontPath variable isn’t defined. The new font is then set as the active font.
If both of these attempts fail, TWS selects one of the slots in the font table and loads the
requested font in that slot, discarding the one that was already there. The algorithm for selecting
the font to be discarded is the same as the LRU (Least Recently Used) algorithm for discarding
memory pages in a virtual memory system like Unix. The font manager maintains a “clock” or
counter for each font. When a font is made active, its counter is reset to 0 and the counters of all
other fonts are incremented. The larger the counter, the longer its been since the font was used.
The font manager selects the font with the largest counter value as the one to discard.
The font table mechanism doesn’t apply to the system or title fonts, which are used by menus,
window titles and system dialogs. While these can be changed by the application they are not
subject to swapping.
In addition to the font table and the system resource fonts, TWS maintains the concept of the
current font. At any point in time, the current font is the text font that would be used if the

4 The text font has been discontinued -- instead, the Text gadget can be assigned its own font just like any other

gadget.

The TWS Window System Reference and Tutorial Release 4.0

67 Menus

system were to draw text. Access to the current font is particularly efficient since it avoids
searching the font table. Whenever a request is made to set a font, TWS first checks to see if the
request is already the current font. If so the font manager can return immediately.

6.3. Managing Fonts
As a consequence of the use of dynamic swap tables for storing a limited number of fonts, any
attempt to access a font could result in loading the font file from disk. This can be time-
consuming if an application uses a great many different fonts. Here are some guidelines for
maximizing performance.
Use only as many fonts as absolutely necessary. An application that limits itself to no more than
five fonts, plus the system, title, and icon fonts, will never have to swap to disk.
The best possible case is to use the system font for everything.
For applications that use multiple fonts, whether swapping or not, performance is improved by
grouping gadgets by common font. Remember that as each gadget is drawn the system sets the
current font to the gadget’s font, loading that font from disk if necessary. Once a font is set, the
system does almost no work at all to set the same font again. Since gadgets are always drawn in
the order they’re created in the window, an effective strategy is to create all window gadgets
that use the same font, then all gadgets that use the next font, etc.
Slight performance improvement comes from setting the most used fonts first, since the system
scans the table for matching fonts. This can be difficult to ensure, however, and is probably
impossible if fonts must be swapped in.
Avoid stroked fonts. They take no more time to load than bitmap fonts but take much longer to
draw.

6.4. Interface functions [smfont.h]

6.4.1. char *SM_GetCurrentFont()

Returns the character string name of the current font. The string is the name of the file where
the font is stored. See also: SM_GetIconFont; SM_GetSystemFont; SM_GetTitleFont.

6.4.2. int SM_GetCurrentFontDescent()

Returns the size in pixels of the descender portion of the current active font. See also:
SM_GetSystemFontDescent.

6.4.3. int SM_GetCurrentFontHeight()

Returns the height in pixels of the current active font. See also: SM_GetFontHeight,
SM_GetCurrentFont.

6.4.4. void *SM_GetFontBuf(char *font)

Returns a pointer to the font’s buffer area, loading the font from disk if necessary. The font
buffer contains the graphics kernel representation of the font. The application can cast the buffer
to the kernel representation, then extract information from it:

fontRcd *fbuf;
int angle;
fbuf = (fontRcd *)SM_GetFontBuf(“cour9.fnt”);
if (fbuf) {

angle = fbuf->chAngle;
}

The example shows how to obtain the italics slant angle from a MetaWINDOW™–based
application. The SM_GetFontBuf function returns a pointer to the MetaWINDOW™ font record,

The TWS Window System Reference and Tutorial Release 4.0

68 Menus

loading it from disk (and thereby using a slot in the font table, potentially swapping out an
existing font) if necessary.

6.4.5. int SM_GetFontHeight(char *font)

Returns the height in pixels of the requested font. If necessary, the font is temporarily read in
from disk so its height can be determined. See also: SM_GetSystemFontHeight,
SM_GetTitleFontHeight, SM_GetIconFontHeight.

6.4.6. char *SM_GetGadgetFont(void *gadget)

Returns the character string name of the font associated with the gadget gadget. All gadgets
have a font, whether or not they output any text. The default font is the system font at the time
the gadget was created.

6.4.7. char *SM_GetIconFont()

Returns the character string name of the icon font. The string is the name of the font file where
the font is stored.

6.4.8. char *SM_GetSystemFont()

Returns the character string name of the system font. The string is the name of the font file
where the system font is stored.

6.4.9. int SM_GetSystemFontDescent()

Returns the size in pixels of the descender portion of the system font. See also:
SM_GetCurrentFontDescent; SM_GetSystemFontHeight.

6.4.10. int SM_GetSystemFontHeight()

Returns the height in pixels of the system font. The height is the full vertical size of the font’s
bounding box. See also: SM_GetCurrentFontHeight; SM_GetSystemFontDescent;
SM_GetTitleFontHeight

6.4.11. char *SM_GetTitleFont()

Returns the character string name of the title font. The string is the name of the font file where
the font is stored.

6.4.12. int SM_GetTitleFontHeight()

Returns the height in pixels of the current title font. The height is the full bounding box height of
the character.

6.4.13. void SM_SetGadgetFont(void *gadget, char *fontname)

Sets the font that will be used when drawing the gadget gadget to that in the disk font file
fontname. Gadget is the superclass gadget of a specific gadget (retrieved using the
GetGadgetSuperclass function). The gadget must already be created. The font file must be in
the directory specified by the FontPath configuration variable, or in the current directory if
FontPath isn’t defined.
If the gadget is in the focus window, it is redrawn to reflect the new font. Changing a gadget’s
font doesn’t change the gadget’s font size.

6.4.14. void SM_SetGadgetFontSize(void *gadget, int width, int height)

Sets the width and height for a gadget that uses stroked kernel fonts. If the gadget uses a
bitmap font the function succeeds but has no affect -- the size of a bitmap font is fixed.

The TWS Window System Reference and Tutorial Release 4.0

69 Menus

If the gadget is part of the focus window, the gadget is redrawn immediately with the new font
size.

6.4.15. int SM_SetIconFont(char *fontname)

Sets the system font to that in the disk font file fontname. The new font will be used for all
subsequent icon drawing, but doesn’t affect any icons already drawn.

6.4.16. int SM_SetSystemFont(char *fontname)

Sets the system font to that in the disk font file fontname. The new font will be used for all
subsequent system text, such as menus and certain dialogs, but doesn’t affect any system text
already drawn.

6.4.17. int SM_SetTitleFont(char *fontname)

Sets the system font to that in the disk font file fontname. The new font will be used for all
subsequent titles, but doesn’t affect any titles already displayed.

6.4.18. int SM_SetFont(char *font)

Sets the font font as the current font, loading it from disk if necessary. An application only has to
do this explicitly if it draws text in the graphics canvas rather than in label or other text gadgets.

The TWS Window System Reference and Tutorial Release 4.0

70 Menus

7. Cursors
Some individual regions in the TWS user interface have unique cursors associated with them. The
cursor is the small pictograph on the screen that indicates where the graphics locator is, and
shows where mouse events will be directed. TWS applications can change the cursor shape
directly, and can also set the shape the cursor will be when it is in certain window regions.
The window regions where cursors are attached and their default cursor shapes are:

Region Cursor Mnemonic Default shape

Window title bar MOVECURSOR 4-way arrows

Upper-left resize handle ULRESIZECURSOR 2-way arrow

Upper-right resize handle URRESIZECURSOR 2-way arrow

Lower-left resize handle LLRESIZECURSOR 2-way arrow

Lower-right resize
handle

LRRESIZECURSOR 2-way arrow

Graphics state canvas GRAPHCURSOR Crosshair

All others MAINCURSOR Standard upper-left pointer

TWS automatically switches the cursor to the appropriate shape when the cursor enters the
appropriate region of the active window. Regions of inactive windows don’t trigger a change. If
the cursor isn’t in any particular region then the MAINCURSOR is displayed.

7.1. Data Types

typedef struct {
 int hotx, hoty;
 unsigned char *foremask, *backmask;
} CursorType;

The CursorType structure contains the definition for a TWS cursor. Cursors are composed of two
16x16 bit arrays, contained in the foremask and backmask fields. When a cursor is displayed, the
“1” bits of the background mask are drawn in black, and the “1” bits of the foreground mask are
drawn in white. The “0” bits of both masks are transparent.
The hotx and hoty fields define the bit in the mask that is the cursor’s screen location, called the
cursor’s hotspot.

7.2. Setting Application Cursors
The application can change the cursor. One cursor is set aside for application use, called the
USERCURSOR. This cursor starts out undefined.5 The first step is to define a shape and hotspot
for this cursor using the SM_DefineCursor function:

CursorType my_cursor;
/* code to setup the cursor omitted */
SM_DefineCursor(USERCURSOR, &my_cursor);

5 Actually, the shape of this cursor may be predefined by the graphics kernel system. If you select this cursor

before defining it, you’ll get the graphics kernel cursor.

The TWS Window System Reference and Tutorial Release 4.0

71 Menus

The CursorType structure contains a mask for the cursor foreground and background, and the
cursor-relative coordinates of the hotspot — the single pixel within the cursor rectangle which the
system uses to determine the cursor’s coordinate.
Then to switch to the custom cursor, call SM_SetCursor:

SM_SetCursor(USERCURSOR);

to restore the normal arrow cursor, call SM_SetCursor again:

SM_SetCursor(MAINCURSOR);

7.3. Changing the System Cursors
Using the same technique as above, an application can change the cursor designs used for
moving windows, resizing, the graphics canvas, etc. The cursor manager automatically changes
to these cursors when the mouse pointer enters the appropriate region.
Instead of USERCURSOR, substitute one of the following constants to redefine a system cursor:

Constant Description
MAINCURSOR The normal system cursor, an upward-left pointing arrow;
MOVECURSOR The cursor displayed when the mouse pointer is in a window title

bar;
GRAPHCURSOR The cursor displayed when the mouse pointer is in the active

window’s graphics canvas region;

URRESIZECURSOR
ULRESIZECURSOR
LRRESIZECURSOR

LLRESIZECURSOR Cursors displayed for the upper-right, upper-left, lower-right, and
lower-left window resize drag regions, respectively

7.4. Interface Functions [cursor.h]

7.4.1. int SM_GetCurrentCursor(void)

Returns the cursor constant (see the table above) for the cursor currently displayed.

7.4.2. int SM_SetCursor(int cursornum)

Sets the display cursor to the one currently installed at cursornum. The value of cursornum can
be any integer expression that evaluates to (0 .. MAXCURSORS-1). Returns 0 if cursornum is in
range, non-0 otherwise.

7.4.3. int SM_DefineCursor(int cursornum, CursorType *cursor)

Replaces the cursor cursornum with the user-defined cursor cursor. Once a system cursor has
been reset it can be restored to its previous shape only by setting it with another call to
SM_DefineCursor.

Example
The following shows how an application would set up a custom cursor and display it.

/*
0000000000000000

The TWS Window System Reference and Tutorial Release 4.0

72 Menus

0000000000000000
0000000000000000
0000000000000000
0000000---000000
0000000-1-000000
00000---1---0000
00000-11011-0000
00000---1---0000
0000000-1-000000
0000000---000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
*/
CursorType mycursor = { 7, 7,
{0x00, 0x00,
0x00, 0x00,
0x00, 0x00,
0x00, 0x00,
0x00, 0x00,
0x00, 0x80,
0x00, 0x80,
0x03, 0x60,
0x00, 0x80,
0x00, 0x80,
0x00, 0x00,
0x00, 0x00,
0x00, 0x00,
0x00, 0x00,
0x00, 0x00,
0x00, 0x00},
{0x00, 0x00,
0x00, 0x00,
0x00, 0x00,
0x00, 0x00,
0x01, 0xc0,
0x01, 0x40,
0x07, 0x70,
0x04, 0x10,
0x07, 0x70,
0x01, 0x40,
0x01, 0xc0,
0x00, 0x00,
0x00, 0x00,
0x00, 0x00,
0x00, 0x00,
0x00, 0x00};

int main(int argc, char *argv[])
{

/*
** Define the user cursor to the cursor manager
*/
SM_DefineCursor(USERCURSOR, &mycursor);
/*
** Make the user cursor the one that is displayed automatically
** whenever the cursor is in the active window graph region
*/
SM_DefineCursor(GRAPHCURSOR, &mycursor);
/* ... */

}

int MyWindowProc(WindowType *w, EventType *event)
{

int oldcursor; /* Original cursor to save */

if ((event->ButtonEvent == LEFTBUTTONPRESS)

The TWS Window System Reference and Tutorial Release 4.0

73 Menus

&& (event->Region == CONTENTREGION)) {
/*
** If the user presses the left mouse button inside the window,
** change the cursor
*/
oldcursor = SM_GetCurrentCursor();
SM_SetCursor(USERCURSOR);
/* ... additional processing ... */
SM_SetCursor(oldcursor);

}
}

The TWS Window System Reference and Tutorial Release 4.0

74 Messaging

8. Messaging
The TWS system is designed such that different parts of an application share data through the
window structure’s user data field. For passing data between different parts of a program which
don’t share a window structure, a simple messaging system is provided. The messaging system
provides a central structure for broadcasting and retrieving messages.
In order to use the messaging system, message senders and receivers must agree on a protocol
(“I’ll send messages to XXX; you look for messages addressed to XXX”), and a message
dictionary (“If I send a message of 1 it means I’m hungry; if I send a message of 2 it means
bring me a beer.”). There can be any number of functions sending or receiving messages, or
both.
Retrieved messages are removed from the message queue. The message queue is a fixed length,
128 messages. When the queue is full additional messages are discarded. The posting function is
notified (the SM_PostMessage function fails) if the message can’t be posted. However, there’s
no way for a receiving function to know that somebody tried to post a message but the posting
failed. All a receiving function can know is whether or not there are messages pending. It is the
application writer’s responsibility to ensure that messages are retrieved in a timely manner so
that the message queue doesn’t overflow.
Messaging is inherently asynchronous; that is, there’s no way for a function that posts a message
to know exactly when the message will be retrieved, or that it will be retrieved in any particular
order relative to other messages in the queue. In fact, there’s no way to force messaging to be
synchronous. It’s up to the application programmer to take advantage of this behavior.
The window system itself does not use the messaging system. Messaging is provided as a
convenience for the application writer. Messaging can be useful for communicating to/from
background procedures.
In general you should use the window data fields to provide shared data whenever possible,
because it’s a more efficient mechanism than messaging. Messaging tends to be more flexible,
however.

8.1. Data Types
A message is contained in a data structure described below:

typedef int MessageType;
typedef int SenderType;
typedef void *UserDataType;

typedef struct {
 MessageType message;
 SenderType from;
 SenderType to;
 UserDataType data;
} MessagePacketType;

The message, from, and to fields are used to distinguish who messages are intended for. A
receiving function can grab all messages of a particular type (ie., with a specific value in the
message field), all messages from a certain sender (ie., a specific value in the from field), and/or
all messages addressed to a specific destination (ie., with a specific value in the to field). Hybrid
combinations are also possible.
The data field is a pointer to a memory region. Typically the sending function allocates and fills
this memory with the information to be sent. The receiver would then free the memory after
receiving the message. The danger here is that if messages aren’t retrieved, memory is wasted in
undelivered message data. This is another reason to make sure messages are retrieved with
dispatch.

The TWS Window System Reference and Tutorial Release 4.0

75 Messaging

8.2. Interface Functions smmessag.h

8.2.1. int SM_GetMessage(MessageType t, MessagePacketType *msg)

Returns the next message on the message queue of type t in the message packet variable msg,
which must be allocated. If there are no messages on the queue of type t then False is returned
and msg is unchanged.

8.2.2. int SM_GetMessageFor(SenderType t, MessagePacketType *msg)

Returns the next message on the message queue addressed to t in the message packet variable
msg, which must be allocated. If there are no pending messages for t then False is returned and
msg is unchanged.

8.2.3. UserDataType SM_GetMessageData(MessagePacketType *msg)

Returns the data associated with the message, if any. The application can then cast as
appropriate.

8.2.4. SenderType SM_GetMessageDestination(MessagePacketType *msg)

Returns the identifier for the addressee for the message.

8.2.5. SenderType SM_GetMessageSender(MessagePacketType *msg)

Returns the identifier for the sender of the argument message.

8.2.6. MessageType SM_GetMessageType(MessagePacketType *msg)

Returns the message type of the argument message.

8.2.7. int SM_InitMessage(void)

Initializes the messaging system. Must be called before any messaging functions can succeed.
Returns True if the message system is successfully initialized.

8.2.8. int SM_PostMessage(MessageType t, SenderType from, SenderType to,
UserDataType data)

Puts a message onto the message queue with the supplied data. If the message queue is full or
uninitialized then False is returned, otherwise True.

8.3. Example
There are three basic steps to using the TWS messaging system: Initialize the messaging system
by calling SM_InitMessage (probably in the main function); create a message ‘dictionary’ that
defines message types and establishes sender and receiver IDs; write the appropriate functions
that post and retrieve messages.

#define MSGCOUNTDOWN 1 /* Message type */
#define MSGCOUNTFUNC 1 /* Sender ID */
#define MSGRECVFUNC 2 /* Receiver ID */

Notice that the message type and sender ID are the same actual value. This is harmless.
The example sender simply posts a message after every 10th time it’s called. The message is the
date and time the message was posted.

#include <smmessag.h>
#include <time.h>
void Countdown(void)
{

static unsigned long counts = 0L;

The TWS Window System Reference and Tutorial Release 4.0

76 Messaging

static time_t now;

counts++;
if ((counts % 10) == 0) {

now = time(NULL);
SM_PostMessage(MSGCOUNTDOWN, MSGCOUNTFUNC, MSGRECVFUNC, (UserDataType)now);

}
}

Notice that, in this example, the sender doesn’t allocate memory for the message data. Instead a
local static variable is used. This is another convention that has to be understood between sender
and receiver. Generally an application would not use this technique because all messages would
reference the same memory location, so the message data for all messages is changed every
time a new message is posted.
The receiving function simply retrieves messages and recovers the data:

#include <smmessag.h>
#include <time.h>
void Receiver(void)
{

time_t then;
MessageType msg;

if (SM_GetMessage(MSGCOUNTDOWN, &msg)) {
then = (time_t)SM_GetMessageData(&msg);
fprintf(stderr, “Counter message occurred at %s\n”,ctime(&then));

}
}

The TWS Window System Reference and Tutorial Release 4.0

77 Icons

9. Icons

An icon is a minimized representation of a window. When an application user selects the window
minimize button, the window’s icon representation is displayed. While the window is minimized
any background processes attached to the window continue normally, but the user can only
move the icon on the screen and restore it to its original size.
TWS icons are not stored on disk. Icons are created dynamically by the window system, allocated
and de-allocated via TWS functions. The pixmap images displayed within icons (and used
elsewhere within TWS) can be stored on disk, however.
Also see the chapter on PixmapTypes in the Gadgets section.

9.1. Creating a Window Icon
By default, a window has no icon and therefore can’t be minimized. Before any window can be
minimized the application must set the window icon with the SM_CreateIcon function. This
function creates the icon and sets the title and pixmap that will be used in the icon display.
The size of an icon is determined by the pixmap that’s passed to it. TWS adds a little space
around the edge of the pixmap, plus enough space below the pixmap to write the icon title. If no
pixmap is passed, TWS uses a default size of 72x72 pixels. Usually an application will use a set of
same-size icon pixmaps to give the application a consistent look. Also see the Pixmaps gadget
chapter for more information on TWS pixmaps.
The position of an icon is determined when it’s first used. Icons are initially positioned along the
right edge of the workspace, starting at the top. Subsequent icons are positioned down the edge
of the screen. The application user can drag icons (or the program can move them in code) to
any position on the screen. Each time a window is minimized the icon is redrawn in its previous
position.
Minimized windows remain on the window stack, but, unless there are no non-minimized
windows on the screen, an icon window can’t be the active window. When an icon is restored, it
becomes the active window.

9.2. Icons and Closing Windows
When a window that has an icon attached to it is closed, the icon is freed as well. However, the
pixmap attached to the icon is not freed. This is because any number of window icons may share
a single pixmap. The application must free the pixmaps attached to icons as necessary.

9.3. Operations on Icons
The application user can only move and restore icons. An icon is moved by dragging it with the
mouse. Click and drag anywhere within the icon border to move the icon. To restore the window
from an icon, click within the icon without moving the mouse. Restoring a window from an icon
generates a window resize event. The application can also move an icon in code and can change
the icon pixmap.

9.4. Data Types

typedef struct {
 char *title; /* String label for the icon */
 WindowType *parentwin; /* Window the icon belongs to */
 PixmapType *pixmap; /* Icon image */

The TWS Window System Reference and Tutorial Release 4.0

78 Icons

 LabelType *label; /* Icon label */
 int x, y; /* Icon absolute position */
 char *screenunder; /* Screen under the icon */
 int (*dropfunc)(); /* Drop function for drag-n-drop */
 void *data; /* User data */
} IconType;

The title is the text displayed in the icon’s label region. If this string is NULL then the title field
from the window is used. In either case, the string is clipped at the label region boundaries.
parentwin is the window the icon belongs to. Every window has its own icon. The pixmap
displayed in the icon is also unique to the icon, even if the image displayed is the same as other
icons.
The icon position is stored in x,y, which is never manipulated by the application. The
screenunder, dropfunc and data fields are currently unused.

9.5. Interface Functions smicon.h

9.5.1. IconType *SM_CreateIcon(WindowType *w, char *title, PixmapType *pm)

Creates a new icon and attaches it to the window. The icon title will be set to title, and the
pixmap image for the icon will be pm. If title is NULL then the window title will be used. If pm is
NULL then a blank image is displayed when . Returns a pointer to the new icon.
Example:

w = SM_NewWindow(&r, “MyWindow”, DOCUMENT, VOID, VOID);
pm = SM_ReadPixmap(w, “mypixmap.pxm”);
wicon = SM_CreateIcon(w, NULL, pm);

Creates an icon whose title is be the window title “MyWindow” and whose image will be the
pixmap contained in the file mypixmap.pxm.

9.5.2. PixmapType *SM_GetIconPixmap(WindowType *w)

If the window has an icon, returns the pixmap for the icon. Returns NULL if the window has no
icon or if the icon has no pixmap.

9.5.3. void SM_MoveIcon(WindowType *w, int dx, int dy)

Move the icon associated with window w a delta amount, (dx, dy). Positive values for dx and dy
move the icon to the right and down, respectively, while negative values move it to the left and
up.

9.5.4. void SM_SetIconPixmap(WindowType *w, PixmapType *pm)

 Set the pixmap for the icon for window w to pm. The pixmap should already be created, and the
window should already have an icon. If the window doesn’t have an icon then the function does
nothing. If the icon already has a pixmap it is simply discarded, so the application should take
care to retrieve and free an existing pixmap as necessary.

The TWS Window System Reference and Tutorial Release 4.0

79 Icons

Part Two

The Graphics
State

The TWS Window System Reference and Tutorial Release 4.0

80 Graphics

10. Graphics Functions
TWS supports a limited set of drawing and graphics functions for drawing points, lines, and other
simple 2d geometry, and for setting drawing colors, changing the drawing canvas and other
housekeeping chores. The window graphics system combines with the Color Manager system to
provide a flexible tool set for drawing and imaging applications.
Of course, the entire TWS window system is graphical in nature, in the sense that the computer
video system is run in graphics mode and the entire user interface is produced using graphics
kernel routines. The topic of this section is the specific set of TWS functions that permits an
application to do “traditional” direct drawing.

10.1. The Graphics State
Before an application can draw graphics in a window a Graphics State must be created for the
window. The graphics state is a set of parameters that defines locations, colors, drawing modes,
line styles and so forth for drawing in a window. The graphics state stores all this information and
applies it to all drawing requests to the window. This allows the application to specify green as
the drawing color, for example, and know that anything drawn in that window will be green, no
matter what other windows are opened, get the focus or whatever.
All drawing is relative to the graphics state’s canvas region and is clipped within it. The canvas, in
turn, is relative to the window’s content region. By default the canvas is the same size as the
content region, but can be made either larger or smaller.

The illustration shows how the graphics are clipped to the window’s graphics canvas (white
region), while the window’s content region (gray region) is larger.
This behavior makes it easy to separate window control graphics like buttons and labels from the
drawing graphics. A drawing or painting program doesn’t have to worry about clobbering buttons
or other window controls as long as they are outside the graphics canvas6.
Besides clipping at the canvas borders, the Graphics State keeps track of other information, like
the current graphics locator position, drawing color and rasterop mode, background color and so

6Actually there’s no mechanism to enforce this, and the system will happily draw buttons or whatever right over

your graphics canvas. It’s then up to you to worry about preserving the buttons.

The TWS Window System Reference and Tutorial Release 4.0

81 Graphics

forth. The bottom line is that when a window gets the focus, its Graphics State is just as it was
when it lost the focus.
The main purpose of the draw and redraw window management event functions is to provide a
way to restore graphics whenever a window is moved, resized, exposed, etc. The window system
itself knows how to restore gadgets and menus and so forth, so the application mainly has to
worry about drawing anything in the graphics canvas.

10.2. Data Types

typedef struct {
 int gx, gy; /* Graphics cursor location */
 int tx, ty; /* Text cursor location */
 ColorType *palette; /* Color palette */
 int ncolors; /* Number of colors in the palette */
 ColorType *forecolor; /* Graphics foreground color */
 ColorType *backcolor; /* Graphics background color */
 ColorType *tcolor; /* Text color */
 int penmode; /* Xor, And, etc. */
 int linewidth;
 int linestyle; /* Dash, solid, etc. */
 int textmode;
 FontType *font; /* Text font */
 RectType devicecanvas; /* Drawable region in device coords */
 RectType canvas; /* Drawable region in user coords */
 char *save_file; /* Save-under storage file */
 int step; /* Number of save-under buffers */
 RectType buffrect[64];
 int canvasborder; /* Flag for drawable region border */

} GraphStateType;

By default a window has no graphics state. The application must create and initialize a graphics
state for those windows that need it using the SM_CreateGraphState function.
The palette variable is where a window’s local color table is stored. The foreground, background
and text color fields are the colors used for drawing, erasing, and drawing text, respectively. gx
and gy mark the position of the graphics cursor, which is the origin position for relative drawing
(GR_LineTo for example), while tx and ty serve the same function for graphics text.
The canvas is a rectangle in either an absolute or virtual coordinates. Absolute coordinates are
relative to the upper-left corner of the window’s content region. They’re specified using non-
negative integers for the rectangle coordinates and are in units of pixels.
Virtual coordinates are also relative to the upper-left corner of the window content region but are
specified using negative integers between -999...-1. TWS treats the absolute values of these
coordinates as the fractional distance from the upper left corner to the opposite side, in
thousandths of the distance. For example, a position of -500 is abs(-500)/1000 = 500/1000 = 0.5
= 1/2 the distance from one edge of the content region to the opposite edge. Using virtual
coordinates, the relative position and size of the canvas stays the same even though the window
is resized.
Whether virtual or absolute coordinates are used for the canvas, the devicecanvas always
contains the absolute size and position of the canvas in device coordinates. This rectangle is
maintained internally so it doesn’t have to be recalculated for every drawing request.
The canvasborder field determines if the canvas will have a border and, if so, what style of
border. The relevant constants are in smtypes.h:

Border Constant Value Description
SCULPTED 1 A 3D “recessed” border -- the interior of the canvas appears sunken

into the screen. The depth depends on the BevelDepth window
configuration option.

FLAT 3 A single black line.

The TWS Window System Reference and Tutorial Release 4.0

82 Graphics

BEVELED 4 A 3D “raised” border -- the interior of the canvas appears to rise
from the screen. The depth depends on the BevelDepth window
configuration option.

CHISELED 5 The appearance of a line “etched” into the screen.

A value of 0 (SMDEFAULT) leaves the canvas unbordered. For the SCULPTED and BEVELED
styles, the depth of the effect depends on the BevelDepth configuration option.

10.3. Using Graphics
In general, an application can treat a graphics canvas as though it were the entire screen. The
upper left corner is (0,0). A reference outside the canvas is simply clipped. It doesn’t really
matter where the window is on the screen and it doesn’t matter what happens between
successive draws; the pen location, colors, and all other parameters within a canvas are
preserved.

10.3.1. Graphics and Color

The TWS graphics state and the color manager work together to enable graphics for an
application. Colors can be taken from the window color table, or from the system color table.
Before the graphics functions can use a window color, of course, the application must allocate
and fill one.
Using system colors allows an application to draw using the fixed set of colors the color manager
reserves for window borders, backgrounds, titles and so forth. This assures that a graphic will
look the same in any graphics mode, and regardless of the window colors. When an application
needs more control over colors and more of them the window color table would be used.
The graphics system doesn’t know whether a color is a system color or a window color. It’s up to
the application to be sure to always provide legal colors to the graphics state. See the chapter on
Colors for more information.

10.3.2. Images

TWS has provisions for working with areas of the graphics display in a fast, hardware-dependent
mode. Rectangular areas of a graphics canvas can be captured into a ImageType variable, and
can later be written back to the same graphics canvas, or a canvas in a different window.
To capture a portion of the canvas, first determine the amount of memory required using the
function GR_ImageSize. If the size value returned is greater than 0 then allocate a pointer to
an ImageType variable. The image is then captured using the GR_GetImage function.

long size;
ImageType *image;
RectType r;

/*
** Create the rectangle enclosing the area to be captured
*/
r.Xmin = 1;
r.Ymin = 1;
r.Xmax = GR_GetCanvasWidth(w) - 1;
r.Ymax = GR_GetCanvasDepth(w) - 1;
/*
** Find out how much memory required for an image this size
*/
size = GR_ImageSize(&r);
if ((size > 0) && (size < GRMAXIMAGE)) {

image = (ImageType *)malloc((size_t) size);
GR_GetImage(w, &r, image);

}

The TWS Window System Reference and Tutorial Release 4.0

83 Graphics

The constant GRMAXIMAGE is defined as the largest block of memory that can be allocated for
an image. This value is defined in smgraph.h and is compiler and graphics kernel dependent.
The image can be put back into a graphics canvas, either the same one or a different one. The
rectangle where the image is put must be exactly the same size as the rectangle when the image
was grabbed.
If any part of the source rectangle for the GR_GetImage function is outside the canvas border,
that part of the image will contain undefined values. When putting an image, any portions of the
destination rectangle that are outside the canvas are clipped.

10.3.3. Blocking

When an application draws to a window, TWS goes to a lot of trouble to make sure the window
has the focus, that the drawing will be clipped to the window canvas or border, whichever is
smaller, that drawing will use the correct colors, line styles, etc., as stored in the graphics state.
All of this takes time.
Tight loops that draw repeatedly to the same window can be optimized by setting blocking for
the window. When blocking is enabled, TWS sets all the drawing parameters in the graphics
kernel hardware and software from the window’s graphics state. From then on, TWS skips the
graphics state setup, assuming it’s already done. This results in a significant performance boost.
Blocking imposes some restrictions on an application: for one, the application can’t draw to any
other window while blocking is enabled. This includes gadgets in the same window. Second, the
application must only block the focus window. Third, the application must unblock the window
when drawing is done. TWS doesn’t explicitly forbid doing any of these things wrong, so it’s up to
the application developer to program carefully.
Any modifications to a gadget while blocking is enabled will not be reflected on the screen. Some
gadgets, in particular Pixmaps, set a redraw flag internally if an application modifies them while
blocking is on. When blocking is released, TWS explicitly refreshes any Pixmap gadgets that were
modified. See the Iconedit demo program for an example of this.

10.4. Interface Functions smgraph.h
A TWS application must always use TWS graphics functions and not the graphics functions of the
underlying graphics kernel system.7 Only the TWS graphics routines are aware of the window
hierarchy, the graphics state, clipping to the graphics canvas, etc.

10.4.1. int GR_CharWidth(char *c)

Returns the width in display pixels of the argument character, based on the currently loaded
system font. Return value is unpredictable if c is not a printable character.

10.4.2. int GR_ClearCanvas(WindowType *w)

Erases the window’s graphics canvas to the graphics background color. See also:
SM_EraseContent

10.4.3. int GR_CloseGraphState(WindowType *w)

Deletes the graphics state associated with the window and reclaims memory used by it. This
function is usually only called when a window is being closed and is called automatically by the
TWS internally when a window is closed. An application must not attempt any graphics functions
after the Graphics State has been closed. If the window has no graphics state then this function
simply returns. See also: SM_CloseWindow.

7OK, this isn’t strictly true either. That is, TWS doesn’t forbid an application from using graphics kernel routines.

I just think it’s usually a bad idea. Please let me know if you need a window analog of a graphics kernel function; I’ll
get it into the TWS system.

The TWS Window System Reference and Tutorial Release 4.0

84 Graphics

10.4.4. GraphStateType *GR_CreateGraphState(WindowType *w, RectType *r, int
border)

Creates a new window Graphics State and returns a pointer to it. The Graphics State is initialized
with default values. w is the window the graphics state will belong to. r will be the graphics
canvas and is specified in window content coordinates. If border is True then the graphics canvas
will have a recessed border drawn around it, otherwise not.
If r is NULL then the canvas is initialized to the same size as the window content. Otherwise the
canvas can be any size and in any position relative to the window content. Graphics output is
clipped to the canvas and content, whichever is smaller.
The graphics state is initialized with the following values:

Field Description Default Value
gx, gy Graphics locator/cursor position 0,0
tx, ty Graphics text locator 0,0

palette Graphics color table NULL
ncolors Number of colors in the color table 0

backcolor Canvas background color Window content color
forecolor Drawing color White

tcolor Text color White

penmode Drawing mode (xor, etc.) SMREP
textmode Text drawing mode SMREP

linewidth Width of lines, rects, etc. 1 pixel
linestyle Solid, dashed lines, etc. GRNORMAL

font Text font for graphics text Current system font

save_file File for backing store NULL

10.4.5. int GR_DrawArray(WindowType *w, int x, int y, int l, ColorType *a)

Display an array of color values in the argument window’s canvas region starting at position x,y.

wWindow to draw in;
x, yCanvas-relative position where the color array should start;
l................Number of pixels to draw. The array must be at least this long;
a...............Array of colors, must be at least l long.

The array a must contain at least l colors. The colors in the array do not have to be all the same.
The array is drawn horizontally to the right starting at x,y, ending at position x+l-1,y. This
function is much faster than placing the individual colors using the GR_DrawPoint function,
especially when supported by the graphics kernel hardware. The graphics state locator position is
not affected.

10.4.6. int GR_DrawCircle(WindowType *w, int x, int y, int r)

Draws a round circle of radius r centered at position x,y in window w using the window’s graphics
drawing mode, drawing color, etc.. The circle is ‘hollow.’ The graphics state locator is set to the
point x,y.

The TWS Window System Reference and Tutorial Release 4.0

85 Graphics

10.4.7. int GR_DrawFilledCircle(WindowType *w, int x, int y, int r)

Like GR_DrawCircle, except that the interior of the circle is filled with the current drawing
background color.

10.4.8. int GR_DrawFilledPolygon(WindowType *w, int npts, int *pts)

Like GR_DrawPolygon except the polygon interior is filled with the current drawing background
color.

10.4.9. int GR_DrawFilledRect(WindowType *w, RectType *r)

Like GR_DrawRect except the rectangle interior is filled with the current drawing background
color. The graphics state locator position is not affected.

10.4.10. int GR_DrawLine(WindowType *w, int x1, int y1, int x2, int y2)

Draw a line in the window w between points (x1,y1) and (x2,y2) using the current window
Graphics State for line width, color, etc. The graphics state locator is set to the point x2,y2.

10.4.11. int GR_DrawPoint(WindowType *w, int x, int y)

Sets the point (x,y) in the window w graphics canvas to the current drawing color. The graphics
state locator is set to the point x,y.

10.4.12. int GR_DrawPolygon(WindowType *w, int npts, int *pts)

Draws an outline of a polygon containing npts vertex points. The array pts contains at least npts
pairs of x,y coordinates – that is, pts[0] and pts[1] are the first x,y coordinates, pts[2] and pts[3]
are the next x,y coordinate, etc. Since by definition a polygon is closed, GR_DrawPolygon
automatically connects the last point to the first. The Graphics State locator position is updated to
the first/last point of the polygon.

10.4.13. int GR_DrawRect(WindowType *w, RectType *r)

Draws an outline of the rectangle r. The coordinates of the rectangle are relative to the window
canvas. The Graphics State locator position is not changed.

10.4.14. int GR_DrawSolidCircle(WindowType *w, int x, int y, int r)

Like GR_DrawCircle except that the circle is filled with the graphics foreground color.

10.4.15. int GR_DrawSolidPolygon(WindowType *w, int npts, int *pts)

Like GR_DrawPolygon except that the polygon is the solid foreground color rather than
outlined.

10.4.16. int GR_DrawSolidRect(WindowType *w, RectType *r)

Like GR_DrawRect except the rectangle is the solid foreground color rather than outlined.

10.4.17. int GR_DrawString(WindowType *w, int x, int y, char *string)

Draws the character string string in the specified window, with the left edge baseline of the string
at (x,y) and using the window’s current Graphics State. Like all graphics, the string is clipped at
the window boundaries. The graphics text locator position is set to the end of the string.

10.4.18. ColorType *GR_GetBackgroundColor(WindowType *w)

Returns a pointer to the window canvas background color. The pointer is to the actual data in the
window’s Graphics State structure, not a copy, and should be treated as read-only.

The TWS Window System Reference and Tutorial Release 4.0

86 Graphics

10.4.19. int GR_GetCanvasDepth(WindowType *w)

Returns the depth of the canvas associated with the argument window. If the canvas is a virtual
rectangle then the actual depth at the time of the function call is returned.

10.4.20. RectType *GR_GetCanvasRect(WindowType *w)

Returns a pointer to the rectangle structure for the canvas of the argument window. If the
canvas is a virtual rectangle then the returned rectangle has the canvas dimensions at the time
of the function call, in window content relative coordinates. The returned rectangle is a static
copy of the canvas rectangle; it may be modified and must not be free’d.

10.4.21. int GR_GetCanvasWidth(WindowType *w)

Returns the width of the canvas rectangle for the argument window. If the canvas is a virtual
rectangle then the actual width at the time of the function call is returned.

10.4.22. int GR_GetCursor(WindowType *w, int *x, int *y)

Returns the coordinates for the mouse cursor in graphics canvas-relative coordinates. If the
cursor is outside the window w’s canvas then the values will be negative or greater than the
canvas width or depth.

10.4.23. int GR_GetDevicePoint(int x, int y, ColorType *c)

Returns the color at the absolute screen pixel (x,y), where (0,0) is the upper-left corner of the
display screen. If x or y are outside the screen the return value is unpredictable.

10.4.24. ColorType *GR_GetDrawColor(WindowType *w)

Returns a pointer to the graphics drawing color for the window w. The pointer is to the actual
data in the window’s Graphics State structure and should be treated as read-only.

10.4.25. void GR_GetGraphicsLocator(WindowType *w, int *x, int *y)

Returns the current graphics (x,y) location in window-relative coordinates.

10.4.26. int GR_GetImage(WindowType *w, RectType *rt, ImageType *twsimage)

Retrieves a rectangular block of pixels from the graphics canvas in window w. The rectangle rt
encloses the region, which is read into the buffer field of twsimage.

10.4.27. int GR_GetMouse(WindowType *w, int *state, int *x, int *y)

Returns the position of the mouse cursor relative to the graphics canvas of the window w. state
will contain the mouse button state at the time of the call. Constants defined in smevent.h are:

Constant Value Description

SMDEFAULT 0 No mouse buttons pressed.

RIGHTBUTTONACTIVE 2 Right mouse button is pressed

MIDDLEBUTTONACTIVE 4 Middle mouse button is pressed. Can’t be returned by
a two-button mouse.

LEFTBUTTONACTIVE 1 Left mouse button pressed.

If the window w has no graphics canvas then the function returns -1 and the values of x, y, and
state are indeterminate. Otherwise the value of state is returned and x,y are the cursor
coordinates relative to the canvas, where 0,0 is the upper left corner of the canvas region. That

The TWS Window System Reference and Tutorial Release 4.0

87 Graphics

doesn’t mean the cursor is in the canvas -- the values of x,y could be negative or greater than
the canvas width or depth.

10.4.28. ColorType *GR_GetPalette(WindowType *w)

Returns a pointer to the Graphics State color palette, which is an array of ColorType structures.
Returns NULL if the window has no color palette. Applications would normally treat this array as
read-only.

10.4.29. int GR_GetPoint(WindowType *w, int *x, int *y, ColorType *color)

Returns the color at the point (x,y) in the graphics canvas region of the window w. Returns 0 on
success or non-zero if the point is outside the canvas region. Does not affect the graphics locator
position.

10.4.30. void GR_GetTextLocator(WindowType *w, int *x, int *y)

Returns the current graphics text x,y location in window-relative coordinates.

10.4.31. int GR_HideCursor()

Causes the mouse cursor to disappear. The mouse cursor position will continue to follow mouse
movements, so that the cursor may be in a different place when it is shown again. If the cursor is
already hidden then nothing happens.

10.4.32. unsigned long GR_ImageSize(RectType *rt)

Returns the number of bytes required to store an image, based on the current hardware graphics
mode and graphics kernel system. For real-mode DOS versions of TWS, an image must be less
than 64k bytes.

10.4.33. int GR_InsetRect(RectType *r, int dx, int dy)

Reduce or enlarge the argument rectangle by the amount dx in the horizontal dimension and dy
in the vertical dimension. If dx or dy is positive then the corresponding sides of the rectangle
move closer together; if negative then the sides move apart.

10.4.34. int GR_IsBlocked(void)

Returns True if blocking is on, False otherwise.

10.4.35. void GR_LimitMouse(RectType *r)

Restricts the graphics mouse to stay within the boundary described by rectangle r, whose values
are in device coordinates. If the cursor is not within the rectangle then the results are
unpredictable. If any of the values of r are outside the graphics hardware resolution then the
results are unpredictable. See also: GR_UnlimitMouse.

10.4.36. int GR_LineTo(WindowType *w, int x, int y)

Draws a line from the current window graphics locator position to the window coordinates x,y
using the current window Graphics State. The point x,y is relative to the window’s graphics
canvas. Either the locator position or x,y may be outside the window content region; the line is
clipped at the boundary. The locator position is updated to x,y.

10.4.37. int GR_MouseInCanvas(WindowType *w)

Returns True if the current mouse position is inside the argument window’s graphics canvas
region, False otherwise.

The TWS Window System Reference and Tutorial Release 4.0

88 Graphics

10.4.38. int GR_MoveTo(WindowType *w, int x, int y)

Sets the window’s graphics locator position to the point x,y in canvas-relative coordinates. The
point may be outside the graphics canvas.

10.4.39. int GR_OffsetRect(RectType *r, int dx, int dy)

Translates the argument rectangle by dx,dy. Positive values move the rectangle to the right or
down; negative values to the left or up.

10.4.40. int GR_PointInRect(int x, int y, RectType *r)

Returns True if the point (x,y) is on or inside the rectangle r, False otherwise. Both the point
coordinates and the rectangle must be in the same coordinate reference frame -- e.g., relative to
the same window graphics canvas. Notice that there is no window argument.

10.4.41. int GR_ProtectCanvas(WindowType *w)

Prevents the mouse cursor from displaying while inside the argument window’s canvas region.
When outside the region the cursor displays normally. If the window canvas is already protected
then nothing happens. If another window’s canvas region is protected then the new region
replaces the existing one. If the window has no graphics state then nothing happens.

10.4.42. int GR_ProtectOff()

Cancels the effects of GR_ProtectCanvas. If no window canvas region is protected then
nothing happens.

10.4.43. int GR_PutImage(WindowType *w, RectType *rt, ImageType *twsimage)

Draw an image stored in the twsimage structure into the graphics canvas of window w, bounded
by rectangle rt. The rectangle must be exactly the right size to accommodate the image or it may
not draw correctly.

10.4.44. int GR_SetBackgroundColor(WindowType *w, ColorType *color)

Sets the background graphics color for the window w to color. The color can be from the system
color table or the window color table, but in either case (with one exception described below)
must already be allocated and installed.
If the index field of the color is -1 (the default when a color is created using SM_CreateColor or
SM_InitColor), GR_SetBackgroundColor will substitute the closest color in the system color
table for the requested color. The color does not have to be part of the system or window color
tables, and none of color’s fields modified. The -1 value means that the color has no mapping
into the system color table.
Example:

#include <smwindow.h>
#include <smgraph.h>
#include <smcolor.h>

WindowType *w;
int i;

SM_CreateWindowPalette(w, 256);
for (i = 0; i < 256; i++) {

SM_SetWindowColor(w, i, i, i, i); /* Create a gray-scale color table */
}
GR_SetBackgroundColor(w, SM_GetWindowColor(w, 192));

 See also: GR_SetDrawColor, SM_CreateColor, SM_InitColor, Color Manager.

The TWS Window System Reference and Tutorial Release 4.0

89 Graphics

10.4.45. int GR_SetBlocking(WindowType *w)

Turns on blocking for the window w. Loads graphics settings for the window as necessary and
prevents any other window’s settings from being loaded, resulting in faster drawing for the
blocked window (but don’t try to draw to other windows while blocked!). If another window is
already blocked then returns a non-zero value, otherwise returns 0 on success.

10.4.46. void GR_SetCanvasBorder(WindowType *w, int mode)

Sets the canvas border style to mode. Constants for mode are defined in smtypes.h:

Constant Value Definition

SMDEFAULT 0 No border.

SCULPTED 1 A recessed beveling.

FLAT 3 A single black line.

BEVELED 4 A raised beveling.

CHISELED 5 A carved channel.

10.4.47. int GR_SetCanvasRect(WindowType *w, RectType *r)

Set the drawing canvas rectangle for the window w to the rectangle r. r can be either in window-
content-relative coordinates or in virtual coordinates (or a combination). Regardless of the size of
the canvas rectangle all drawing is clipped at the window content boundaries, or at the canvas
boundary, whichever is smaller. Doesn’t cause the canvas to be redrawn.

10.4.48. int GR_SetDrawColor(WindowType *w, ColorType *color)

Sets the drawing color for the window w to color. This sets the color that will be used for
subsequent line drawing and other graphic operations but does not affect any colors already
drawn. The color can be either a system color or window color (with one exception described
below), but in either case must already be allocated and set.
If the index field of color is -1 (the default when a color is created), GR_SetDrawColor will
substitute the closest color in the system color table for the requested color. The color does not
have to be from one of the color tables, and none of color’s fields are modified. The -1 value
means that the color has no mapping into the system color table.
Example:

#include <smwindow.h>
#include <smcolor.h>
#include <smgraph.h>

ColorType *color;

color = SM_CreateColor(37, 156, 29); /* Allocate and initialize a color */
GR_SetDrawColor(w, color); /* Set to the closest matching color */
GR_DrawLine(w, 1, 1, 50, 1); /* Draw a line using the color */

 See also: GR_SetBackgroundColor, SM_CreateColor, SM_InitColor, Color Manager chapter

10.4.49. int GR_SetDrawMode(WindowType *w, int mode)

Sets the drawing (rasterop) mode for the argument window to mode. The pen’s mode is its
combinatorial operation with the background, such as replace or XOR. Constants for the mode
are found in the file smgraph.h. They are:

The TWS Window System Reference and Tutorial Release 4.0

90 Graphics

Constant Value Description
SMREP 0 Normal drawing; draw color overwrites anything

SMOR 1 Draw color is OR-ed with existing color
SMXOR 2 Draw color is XOR-ed with existing color (rubber-band mode)

SMNAND 3 Draw color is NOT AND-ed with existing color

SMNREP 4 Draw color is NOT REPLACE-ed with existing (transparent)
SMNOR 5 Draw color is NOT OR-ed with existing color

SMNXOR 6 Draw color is NOT XOR-ed with existing color
SMAND 7 Draw color is AND-ed with existing color

Note: Not all rasterop modes will be supported on all graphics kernel systems and all graphics
hardware.

10.4.50. int GR_SetFont(FontType f)

Sets the font that will be used for graphics string drawing. Does not affect the font used for
gadgets or other window elements.

10.4.51. void GR_SetLineStyle(WindowType *w, int style)

Sets the style of line that will be used for drawing lines and geometry. Values for style are
defined in smgraph.h as GRNORMAL for solid line, GRDASHLINE for a dashed line, and
GRDOTLINE for a dot line. Note: not all graphics kernel system running the TWS system support
all line styles for all types of geometry. For example, some may not support multi-pixel lines in
other than solid, or may not directly support filled geometry with other than solid lines. TWS will
attempt to emulate the expected graphics result in software when necessary.

10.4.52. void GR_SetLineWidth(WindowType *w, int width)

Sets the width for drawing lines, graphics shape outlines like rectangles and circles, etc. width
must be >= 0. Note: Not all graphics kernel systems support multi-pixel wide lines, and some
limit the widths (for example, to odd-numbers). TWS emulates multi-pixel lines in software but
also may not support all possible widths. Two drawing width constants are provided that are
guaranteed to be implemented in all TWS versions. These are GRWIDTHNORM (1 pixel lines),
and GRWIDTHWIDE (3 pixel lines).

10.4.53. void GR_SetPalette(WindowType *w, ColorType *p, int n)

Sets the color palette for the window to the color array p which must have at least n elements. If
the window already has a color palette it is discarded. The color array p is copied to the window
Graphics State. The new color palette is not immediately loaded into the hardware.

10.4.54. int GR_SetRect(RectType *r, int x1, int y1, int x2, int y2)

Puts the coordinate arguments into the rectangle structure, with x1,y1 the upper left corner of
the rectangle, and x2,y2 the lower right corner.

10.4.55. int GR_SetTextMode(WindowType *w, int mode)

Sets the rasterop mode that will be used for drawing text to mode. Mode constants are the same
as for the drawing mode and are defined in smgraph.h.

10.4.56. void GR_ShiftPolygon(int npts, int *pts, int dx, int dy)

Adjust all the points in the polygon by dx pixels in x and dy pixels in y. Does not draw the
polygon.

The TWS Window System Reference and Tutorial Release 4.0

91 Graphics

10.4.57. void GR_ShiftRect(RectType *r, int dx, int dy)

Adjust all the points in the rectangle by dx pixels in x and dy pixels in y. Does not draw the
rectangle.

10.4.58. int GR_ShowCursor()

Displays the cursor. If the cursor is already displayed then nothing happens.

10.4.59. int GR_StringWidth(char *s)

Returns the width of the string s in pixels. The value is based on the currently active font and will
be different for different fonts.

10.4.60. int GR_TextWidth(char *s, int start, int length)

Returns the width in pixels of a substring taken from string s beginning at character start and the
following length characters. If length is longer than the string then the width from start to the
end of the string is returned. The width is based on the currently active font and may be different
for different fonts. See also: GR_StringWidth; SM_StringWidth.

10.4.61. int GR_UnlimitMouse()

Allows the mouse cursor to roam freely around the screen. If the mouse is not constrained by a
prior GR_LimitMouse call then nothing happens.

10.4.62. void GR_UnsetBlocking(void)

Turns of blocking. Since blocking can only be in effect for a single window, the window argument
isn’t necessary. Unsetting blocking causes all gadgets attached to the window to be redrawn if
they have been modified. If blocking is off when GR_UnsetBlocking is called then nothing
happens.

The TWS Window System Reference and Tutorial Release 4.0

92 Color

11. Colors
TWS implements a flexible color handling system that supports 4, 8, 15, 16, and 24 bit color
systems. Particular attention has been paid to providing good color management for 4 and 8-bit
lookup table systems like VGA.
There are two levels of color in the TWS color system: system colors and window colors. System
colors are maintained by the color manager and provide the mapping from the application to the
underlying hardware. Window colors are allocated by the application and are typically used by
the graphics drawing functions. These colors are under control of the application program.
Applications usually try to avoid working with system colors and stick to window color functions.
TWS does not support graphics systems with less than 16 available colors. It does not directly
support any monochrome devices (although some transparently map colors to monochrome).

11.1. Look-up Table Color Systems
A lookup table (LUT) color system allows a certain fixed and usually small number of display
colors. The color of each display color (and thus its table entry) is specified by its red, green and
blue components (RGB value). The range of different colors possible in any table entry depends
on how many bits the system allows for each R, G and B component. Most VGA systems support
6 bits for each component, while more advanced graphics systems support 8, 10 or more bits,
depending on the device.
The size of the table varies, too. Standard VGA systems support only 16 entries in the table. So-
called “Super VGA” often supports 256 entries, which is by far the most common arrangement
among advanced graphics workstations.
TWS insulates the application programmer from much of this diversity. All colors are specified
using 8-bit RGB values, and no limit (other than normal memory limitations) is placed on the
creation of window color tables. TWS goes a long way to take care of mapping what the
application does to the underlying hardware.

11.2. How TWS Manages LUT Colors

11.2.1. Organization of the System Color Table

The TWS color manager divides the hardware color palette into two sections, one where system
colors are kept and the other for application colors. The system colors are used by the window
manager for borders, gadgets, text, titles, icons and so forth. The system reserves 16 colors for
this purpose — 14 fixed colors and two variable colors. Applications typically use but do not
change colors in the system section.

0 14 15 254 255System

Application

System

0 239

The diagram shows the organization of colors on a system with 256 hardware colors. The
application section is the pool that window color table colors are drawn from. The color manager
swaps colors in and out of this area as necessary to meet the demands of the active window.
Applications do change these colors, but only indirectly through assignments to window color
tables.
On a standard 16-color EGA or VGA system, there are no free colors available for the application.
In this case the application can only use the fixed system colors.

The TWS Window System Reference and Tutorial Release 4.0

93 Color

11.2.2. Window Color Tables

An application can draw using either the system colors (which can’t be changed), or with its own
custom colors. Before an application can allocate and use its own colors, it must create a
graphics state (see the chapter on Graphics for details). The application can then create a color
table as large as necessary and populate it with colors:

w = SM_NewWindow(&r, “Test Window”, DIALOG, NULL, NULL);
GR_CreateGraphicsState(w, NULL, SMDEFAULT);
SM_CreateWindowPalette(w, 381);
for (i = 0; i < 381; i++) {

r = GetRed(); b = GetBlue(); g = GetGreen();
SM_SetWindowColor(w, i, r, g, b, SMSHARE | SMCLOSESTCOLOR);

}

Window color tables are separate from the system color table. When an application window
becomes active, its color table is mapped into the application area of the system color table.
There’s no restriction on the size of a window color table, although most LUT hardware tables
have 256 or fewer entries. In the example above, the application allocates 381 colors. We’ll see
how TWS handles these “extra” colors shortly.

11.2.3. Using Colors

An application can draw using either system colors or window colors. To retrieve and use a
system color, call SM_GetSystemColor:

...
GR_CreateGraphState(w, NULL, SMDEFAULT);
GR_SetDrawColor(w, SM_GetSystemColor(SMWHITE));
GR_DrawLine(w, 1, 1, 25, 50);

 To use a window color, call SM_GetWindowColor:

...
GR_CreateGraphState(w, NULL, SMDEFAULT);
InitWindowPalette(w);
GR_SetDrawColor(w, SM_GetWindowColor(w, 5));
GR_DrawLine(2, 1, 1, 25, 50);

In the above examples, specific colors are retrieved. It’s also possible to request a color based on
RGB values and have the color manager return the closest matching color:

...
GR_CreateGraphState(w, NULL, SMDEFAULT);
InitWindowPalette(w);
GR_SetDrawColor(w, SM_GetClosestColor(w, 185, 37, 204));
GR_DrawLine(2, 1, 1, 25, 50);

In the case above, the color manager will return the window color closest to the RGB value
(185,37,204).
The application can also change gadget colors using either window or system colors. Gadgets
usually ought to use system colors so they don’t show the “technicolor” effect when active
windows are changed.

11.2.4. Color Mappings, Sharing, and Merging

Obviously, if TWS colors are specified as 8-bit RGB values, and the hardware uses 6-bit values,
somewhere along the line the TWS colors must be converted to hardware colors. This conversion
is called a mapping. This mapping occurs when a window’s color table is inserted into the system
color table.

The TWS Window System Reference and Tutorial Release 4.0

94 Color

Another aspect of mapping colors is this: where in the system color table should a window color
be stored? The simplest method would be to put the first window color into the first system color
entry, the second color into the second, and so forth. However, this isn’t what TWS normally
does.
To map a color, TWS searches to see if there is already a color in the system color table that
matches the window color. If so, that spot in the system color table is reused. The advantages
are twofold: one, if the window that set the color is inactive, then the portions of the inactive
window that use the shared color aren’t changed when the new window becomes active. This
reduces the unpleasant “technicolor” effect that’s common in all graphical interfaces when active
windows change; also, if a window is sharing a color with itself, it leaves more system color
resources free for unique colors. Remember that it’s possible to specify more colors in TWS (16.7
million) than the underlying hardware can display (262K for VGA). For example, the shades of
gray (88,88,88) and (91,91,91) map to the same VGA hardware color (22,22,22). Sharing
prevents colors that aren’t unique when displayed from ending up as duplicates in the system
color table.
Merging allows an application to create window color tables that have more entries than the
underlying hardware. When the TWS color manager discovers that a window that is requesting to
set a color has already used up all system color table entries, it will scan through the portion of
the window color table that has already been mapped and find the color that most closely
matches the color requested. The new color then becomes equivalent to that closest relative.
This is transparent to the application, which continues to treat the color as if it were unique.
On graphics kernel modes that only support 16 colors, the system color table takes all the colors
and there are no spaces left for window colors. TWS takes not of this if color merging is enabled.
On 16-color systems (such as standard VGA), a request for a closest window color will look
instead at the system color table.
The SMSHARE flag turns on color sharing, while SMNOSHARE forces TWS to always allocate a
unique system color table entry (and hence a unique hardware entry) for each requested color,
or fail if it can’t. Applications that expect to modify colors extensively would use SMNOSHARE.
Merging of colors is specified by setting both the SMSHARE and SMCLOSESTCOLOR flags when
the window color is set.

SM_SetWindowColor(w, n, r, g, b, SMSHARE); // Set a window color with sharing
SM_SetWindowColor(w, n, r, g, b, SMNOSHARE); // Defeat sharing
SM_SetWindowColor(w, n, r, g, b, SMSHARE | SMCLOSESTCOLOR); // Sharing and merging

There’s a slight but sometimes noticeable performance penalty for sharing and merging, but for
most applications that do imaging the results are worth it.

The TWS Window System Reference and Tutorial Release 4.0

95 Color

The figure above illustrates the flow for TWS color allocations. The X �symbol represents the map-
ping from window rgb colors to device rgb colors. The shading shows the ownership of system
colors by individual windows. Blocks in the system color table Owner column that are dual
shaded show colors that are allocated to both windows. Unshaded blocks in the Owner column
are system colors that are not allocated.
Also see the following graphics functions: GR_SetDrawColor, GR_SetBackgroundColor,
GR_DrawArray, GR_GetBackgroundColor, GR_GetDrawColor.

11.2.5. Data Types

TWS color information is kept in the ColorType data structure. The system color table and
application window color palettes are both arrays of these.

typedef struct {
 unsigned char r,g,b;
 int index;
 void *owner;
 int flag;
 int count;
} ColorType;

The r,g,b values are the color components as requested by the application. index is the reference
to the system color table for the color. Any number of individual window colors may have the
same system color table index. owner is a reference to the window which allocated the color and
is not usually interesting to the application. The color manager uses this value to determine
which colors can be discarded when the focus window requests a color. Colors owned by the
focus window are never discarded. The flag field is described in the SM_SetWindowColor
function description below, and the count field is used internally and has no meaning to an
application (but must never be changed).

The TWS Window System Reference and Tutorial Release 4.0

96 Color

11.2.6. Reserved Colors

The TWS system reserves 16 colors for its own use. These are used for window borders,
gadgets, workspace content, and text for gadgets and window titles. Some of these colors can be
modified when the system is initialized via the configuration file. The application itself usually
does not modify these colors. The following table outlines the reserved colors:

Color Constant Value RGB
SMBLACK 0 0, 0, 0

SMDARKGRAY 1 96, 96, 96
SMMEDIUMGRAY 2 128, 128, 128

SMLIGHTGRAY 3 192, 192, 192
SMDARKRED 4 128, 24, 24
SMLIGHTRED 5 255, 48, 48

SMDARKGREEN 6 24, 128, 24
SMLIGHTGREEN 7 48, 255, 48

SMDARKBLUE 8 24, 24, 128
SMLIGHTBLUE 9 48, 48, 255

SMDARKYELLOW 10 128, 128, 24
SMLIGHTYELLOW 11 255, 255, 48

SMWHITE 256 255, 255, 255

There are three additional system color constants which do not have a fixed color value. They
are:

Color Constant Value Default RGB
SMWORKSPACECOLOR 12 128, 128, 128
SMACTIVEWINCOLOR 13 168, 32, 32

SMACTIVEWINHILITE 14 255, 96, 96

The values for these system colors can be modified by the application through the TWS.CFG
configuration file. The SMACTIVEWINCOLOR and SMWORKSPACECOLOR colors can be defined
directly. The SMACTIVEWINHILITE color, which is the upper-left color for sculpting the active
window’s border, is calculated by the window manager based on the SMACTIVEWINCOLOR color.

11.2.7. Window Element Colors

The colors used for TWS window elements like borders, title bar and so forth can be changed by
the application via the TWS.CFG configuration file, or through the SM_SetElementColor
function.

Constant Value Default Value

INACTIVE_WINDOW_COLOR 0 SMMEDIUMGRAY

ACTIVE_TITLE_COLOR 1 SMWHITE

INACTIVE_TITLE_COLOR 2 SMDARKGRAY

ACTIVE_MENU_COLOR 3 SMACTIVEWINCOLOR

INACTIVE_MENU_COLOR 4 SMMEDIUMGRAY

The TWS Window System Reference and Tutorial Release 4.0

97 Color

ACTIVE_MENU_TEXT_COLOR 5 SMWHITE

INACTIVE_MENU_TEXT_COLOR 6 SMDARKGRAY

ACTIVE_WINDOW_BORDER_COLOR 7 SMACTIVEWINCOLOR

INACTIVE_WINDOW_BORDER_COLOR 8 SMMEDIUMGRAY

APPLICATION_TITLE_COLOR 9 SMACTIVEWINCOLOR

APPLICATION_TITLE_TEXT_COLOR 10 SMWHITE

DIALOG_CONTENT_COLOR 11 SMWHITE

DIALOG_BORDER_COLOR 12 SMACTIVEWINCOLOR

DIALOG_TEXT_COLOR 13 SMBLACK

DIALOG_GADGET_COLOR 14 SMMEDIUMGRAY

Window element colors can only be system colors. To change a window element color, use the
function SM_SetElementColor:

SM_SetElementColor(DIALOG_CONTENT_COLOR, SMDARKRED);

11.3. Interface Functions smcolor.h

11.3.1. int SM_ActivatePalette(WindowType *w)

Loads the window’s color table into the system color table and passes it along to the hardware.
This function causes the display to immediately use the colors for the argument window. The
window does not have to be the focus window. If the window has no color palette then nothing
happens.

11.3.2. ColorType *SM_CreateColor(int r, int g, int b)

Allocates a ColorType structure, stores the (r,g,b) values in it and returns a pointer. All other
ColorType fields are set to default values. This function is useful for quickly casting truecolor rgb
values to TWS colors. Also see SM_InitColor.

11.3.3. ColorType *SM_CreateWindowPalette(WindowType *w, int n)

Creates a color table with n entries and attaches it to the window argument. The initial table
colors are undefined. The owner field for each color is set to the window and the flag field is set
to normal.

11.3.4. ColorType *SM_GetClosestColor(WindowType *, int r, int g, int b)

Returns the color from the window’s color table that is closest to the requested rgb color. If the
argument window has no local color table then NULL is returned.

11.3.5. int SM_GetElementColorIndex(int element)

Returns the color constant of the system color associated with the element. The range of
element constant values is described in the preceding section, as well as the system color
constants. If the value of element is out of range then -1 is returned.

11.3.6. ColorType *SM_GetPalette(WindowType *w)

Returns a pointer to the window’s local color palette.

The TWS Window System Reference and Tutorial Release 4.0

98 Color

11.3.7. ColorType *SM_GetSystemColor(int n)

Returns a pointer to the nth color in the system color table. If n is out of range for the system
color table then NULL is returned.

11.3.8. ColorType *SM_GetSystemPalette()

Returns a pointer to the table of colors used by the graphics display. This list should be treated
as Read-Only since any changes to the system palette will affect other system color functions.

11.3.9. ColorType *SM_GetWindowColor(WindowType *w, int n)

Returns the color from the argument window’s palette at index n. If there are not n colors in the
window palette, or if the nth color hasn’t been assigned then the return values are indeterminate.

11.3.10. void SM_InitColor(int r, int g, int b, ColorType *c)

Stores the (r,g,b) values into the ColorType struct c. The remaining fields in c are set to default
values and any existing values are lost. Also see SM_CreateColor.

11.3.11. int SM_IsColorEqual(ColorType *c1, ColorType *c2)

Returns True if the two colors are the same color, False otherwise.

11.3.12. void SM_ModifySystemColor(int i, int r, int g, int b)

Modify a color in the system color table. i is the index into the system table to change. The new
color will be the closest hardware equivalent to r,g,b, the RGB color values given in 8-bit (0..255)
primaries. If the index value is outside the range of valid system colors, the function does
nothing.
Note: This function should be used with caution, since the TWS system doesn’t know that its
understanding of the underlying colors is changed. For example, using this function, an
application can change the system color SMDARKRED to a beautiful chartreuse. TWS will
continue to think it’s dark red, however.
See also: SM_SetElementColor.

11.3.13. int SM_ModifyWindowColor(WindowType *w, int n, int r, int g, int b)

Change the color value at window palette color n to the new value r,g,b. Color values must be in
the range of 0..255. The window color palette must already be allocated with at least n entries. If
w is the focus window then the screen display is updated immediately, otherwise the colors will
be updated when w is next active.

11.3.14. int SM_nApplicationColors()

Returns the number of colors the application can support, normally SM_nSystemColors() - 16.

11.3.15. int SM_nColorBits()

Returns the number of bits of color supported by the hardware device in use. For standard VGA
the value returned is 6. TWS supports up to 8-bits of color. Note: for most hardware color
systems there is no reliable way to determine the number of bits per primary color. In most
cases, therefore, SM_nColorBits simply returns a default value of 6.

11.3.16. long int SM_nSystemColors()

Returns the number of colors supported by the underlying graphics system. This number is either
16 or 256 for VGA systems, or 32,767 for hicolor systems.

The TWS Window System Reference and Tutorial Release 4.0

99 Color

11.3.17. int SM_nWindowColors(WindowType *w)

Returns the number of colors allocated for the window’s color palette. This value should be less
than or equal to SM_nApplicationColors().

11.3.18. void SM_SetElementColor(int element, int constcolor)

Sets the color of the window element to the value of constcolor. The values for respective
constants are described in the preceding section. If element or constcolor are out of range then
nothing happens.

11.3.19. int SM_SetWindowColor(WindowType *w, int n, int r, int g, int b, int flag)

Set the window color table entry at index n to the color r,g,b and set the color flag to flag. By
default the function tries to satisfy the request by finding a system color that matches r,g,b and
reusing it, allocating a system table entry not already owned by the window if that fails.
The flag value can modify this behavior. The flag values and their meanings are:

Flag Value Description
SMSHARE 1 The default behavior. Try to find a color in the

system table that already matches the requested
RGB color and reuse it. If that fails, find an unused
color and allocate it. If there are no unused colors
then return an error.

SMNOSHARE 2 Must allocate a unique system color table slot for this
color, otherwise fail. This would be required if the
application is going to change the color values
dynamically (“color cycling”).

SMCLOSESTCOLOR 4 Just find the color already in the window color table
that is closest to the requested color and return it.
This is useful when the application wants to set a
‘fixed’ color palette and force the application to only
use the fixed colors.

SMFLAGDEFAULT SMDEFAULT Follow the default behavior rules.

Flag values can be combined, but the only the combination SMSHARE | SMCLOSESTCOLOR
makes any sense. With this combination, a color request will always succeed.
The r,g,b values are in the range [0..255] regardless of the underlying hardware.

11.4. Truecolor Color Systems
Truecolor systems do not use look-up tables. Instead, every screen color is specified using a RGB
triplet. Typical systems support 4, 5 or 8 bits for each RGB component, for 4k, 32k, or 16.7M
screen colors.
Remember that regardless of the underlying color depth, ColorType values are always specified
using 8-bits of precision, so 0 is full off and 255 is full on for each RGB component. TWS colors
are mapped to the underlying hardware colors transparently.
When TWS discovers that the graphics kernel mode is a truecolor mode8 it shifts gears a bit. For
one thing, it doesn’t create a system color table -- it’s not needed. For another, the flag field in
the ColorType struct and in the SM_SetWindowColor function no longer have meaning. For
drawing purposes, the system uses the RGB values directly.

8For our purposes, “truecolor”, or 24-bit-per-pixel colors, is the same as “hicolor”, or 15 to 16-bits-per-pixel color.

The TWS Window System Reference and Tutorial Release 4.0

100 Color

All of this happens behind the scenes. Many programs will not have to change any source code to
move from LUT color systems to Truecolor systems. The window graphics state still supports
color palette tables, which can be accessed by index, and the color manager will adjust as
necessary. So, for example, you could write a program to display 256-color PCX images, and the
same executable would run identically on four or eight bit LUT systems, or 15 or 24-bit truecolor
systems. In fact such a program is included in the TWS distribution (WINIMAGE).
Obviously an application can make the most effective use of colors if it pays attention to the
actual system capabilities. An application that knows it’s running with 15-bit or 24-bit color can
offer the user more choices than one that always behaves as if it’s using 256 or fewer colors.
Likewise, an application that realizes it only has 16 colors to choose from will probably make
more intelligent use of them than one that ignores the fact. The point of the color manager is to
provide reasonable behavior in a large number of cases.

The TWS Window System Reference and Tutorial Release 4.0

101 Color

Part Three

Gadgets

The TWS Window System Reference and Tutorial Release 4.0

102 Gadgets

12. Gadgets
Gadgets are direct manipulation user interface devices that an application attaches to its
windows. Along with menus, gadgets are the primary user interface structures for TWS.
Gadgets are built in two parts. The ‘generic’ gadget GadgetType is the ‘superclass’9 of all
gadgets, containing data and function hooks common to all gadgets. Each gadget also has
specific data and functionality that is unique to it.

12.1. The Generic Gadget
The generic gadget is the parent, or foundation class, of all TWS gadgets. It has the following
fields:

typedef struct _gadget {
 void *gadget; /* Specific gadget fields struct */
 struct _win *parentwin; /* Window containing the gadget */
 RectType bound; /* Sensitive region for the gadget */
 FontType font; /* Font to draw gadget with */
 int width, height; /* Font width and height */
 int face; /* Font facing */
 short gcode; /* Keyboard code (accelerator) */
 int type; /* Type of gadget subclassed */
 unsigned msg; /* Event types gadget responds to */
 int nofree; /* If True gadget not freed on close*/
 int redraw; /* If True gadget needs redrawing */
 ColorType *backcolor, *forecolor; /* Gadget drawing colors */
 int (*drawproc)(struct _gadget *); /* Draw the gadget */
 int (*deleteproc)(struct _gadget *); /* Delete gadget */
 int (*shellproc)(struct _gadget *,EventType *);
 int (*userproc)(void *); /* Gadget user procedure */
 struct _gadget *next, *prev; /* Links */

} GadgetType;

All gadgets attached to windows are of type GadgetType. Specific gadgets are attached to a
GadgetType parent at the gadget field. Functions to draw and delete the specific gadget are at-
tached to the generic gadget so that the window manager can rapidly manage gadgets as
necessary. The drawproc, deleteproc and shellproc arguments are a pointer to a GadgetType
rather than to the specific gadget type.
The argument to the userproc function, however, is a pointer to the specific gadget. The user
procedure is called by shellproc. One of the shell procedures tasks is to extract the specific
gadget record from its parent gadget argument.

12.2. Modifying Gadget Attributes and Redrawing Gadgets
When a visual element of a gadget is changed, the gadget display is updated the next time the
window is drawn.10 The application can force redrawing of all gadgets that need it by calling the
SM_RefreshGadgets function.
The exceptions to this rule are changes that affect the gadget’s boundary. For example, the
SM_AdjustGadgetBound function immediately erases the old gadget, if the gadget’s parent
window is active. However, the new gadget is not drawn until either the parent window is
redrawn or the application calls SM_RefreshGadgets.

9TWS is not overly ‘object-oriented’ in any rigorous sense. Use of terms like ‘superclass’, ‘foundation class’,

‘subclass’ and so forth is intended to convey the relationship between generic and specific gadgets. If it feels more
natural to think of this in simple ‘parent’ and ‘child’ relationships, please feel free.

10This is new behaviour. In previous versions of TWS, when a gadget that was part of the active window was
changed, the gadget was immediately redrawn.

The TWS Window System Reference and Tutorial Release 4.0

103 Gadgets

12.3. Specific Gadgets
A user application deals with generic gadgets rarely or never. An application deals with window,
or specific gadgets. A window gadget is a ‘subclass’ of the generic gadget GadgetType in that
when an application creates a gadget, like a pushbutton or string list, that specific gadget is
attached to a generic GadgetType parent.

12.4. Generic Gadget API functions [smgadget.h]
All specific gadgets have unique attributes that are addressed with their own API functions, like
SM_GetLabelData for retrieving the user data field of a label. Some attributes are common to
all gadgets. For these situations there are a collection of functions that accept any gadget as an
argument. These functions are described below.
To use a generic gadget function, pass a pointer to any specific gadget. For example, to change
the background color for a button and a label:

ButtonType *button;
LabelType *label;

/* The button and label are created elsewhere. Set the colors */
SM_SetGadgetBackcolor(button, SM_GetSystemColor(SMDARKRED));
SM_SetGadgetBackcolor(label, SM_GetSystemColor(SMMEDIUMGRAY));

12.4.1. void SM_AdjustGadgetBound(void *g, int dx, int dy, int dwidth, int dheight)

Adjust the position and size of the boundary rectangle for the specific gadget g. The gadget is
moved a distance dx,dy, where positive numbers are to the right and down. The gadget
boundary size is modified by dwidth and dheight pixels, where positive values make the gadget
wider/taller, respectively.
A gadget’s boundary coordinates can be negative. If the gadget ends up outside the window
content, the gadget is clipped and may not be visible. The gadget’s width and height must
always be greater than 0, however.
Adjusting a gadget’s boundary has no affect on the contents of the gadget. If the gadget’s parent
window is the active window, the old gadget is erased. See also: SM_SetGadgetFontSize.

LabelType *label;

/*
** ...
*/
SM_AdjustGadgetBound((void *)label, -15, 10, 25,12);

12.4.2. int SM_AttachGadget(WindowType *w, GadgetType *gadget)

Attaches the gadget gadget to the window. Assumes the gadget isn’t already attached to some
other window -- if it is it could be confusing to the window manager. Returns 0 on success, any
other value indicates failure.

12.4.3. int SM_CloseGadgets(GadgetType *g)

Removes the gadget g and all gadgets that were added to the window after g. If g’s parent
window has the focus then it’ll be redrawn without the destroyed gadgets. Typically applications
don’t need to close window gadgets directly, since the window manager does so itself when a
window is closed.

12.4.4. SM_DestroyGadget(void *g)

Removes the gadget g from it’s parent window and frees all resources used by it. Has the same
effect as calling the specific user gadget destructor function for the same gadget. See also:
Specific gadget destructor functions.

The TWS Window System Reference and Tutorial Release 4.0

104 Gadgets

12.4.5. WindowType *SM_GadgetToWindow(void *gadget)

Returns a ‘free’ window whose content and graphics canvas are the same dimensions as the
boundary of the gadget passed in. This function is used to create a ‘window’ for drawing graphics
inside a gadget. The argument gadget is a pointer to any specific user gadget, such as a
ButtonType * or a LabelType *. Although SM_GadgetToWindow will work with any gadget, it
is mainly used for labels and buttons.
The window returned by SM_GadgetToWindow is not on the window stack and therefore isn’t
managed by the window manager. The window’s content region is the size of the gadget’s
boundary. The window has a graphics state whose canvas size is the same size and position as
the gadget’s boundary, and, if the parent window of the gadget has a color palette, the palette is
copied to this new window. All other window and graphics state parameters have their default
(perhaps undefined) values.
The resulting window can be used as an argument to any TWS function that requires a window,
as long as the function doesn’t modify the window’s size or position, and doesn’t rely on the
window being on the stack. The window mustn’t be closed.
The main use for this function is as part of a GraphProc for a ButtonType or LabelType gadget.
The GraphProc is a function that draws the gadget face or content. Since the only way to do
graphics in TWS is within a window’s graphics state canvas, SM_GadgetToWindow is a
convenient way to get a window just the same size as the gadget, draw in it, then free it and
return. This would happen every time the gadget is redrawn.
Use the window function SM_FreeWindow to free the window when it’s no longer needed.

#include <smgadget.h>
#include <smcolor.h>
#include <smwindow.h>
#include <smlabel.h>
int DrawPalette(LabelType *label)
{
 WindowType *w;
 int width, depth;
 float ddx, dx;
 int i, x, y;
 ColorType *c;
 RectType rt;

 /*
 ** Cast label to a window so we can draw in it
 */
 w = SM_GadgetToWindow(label);

 width = SM_GetContentWidth(w);
 depth = SM_GetContentDepth(w);
 ddx = (float)SM_nWindowColors(w) / (float)width;
 dx = -1.0;
 x = 0;
 /*
 ** Draw the colors in the label, where there’s
 ** approximately the same number of lines for
 ** each color
 */
 for (i = 0; i < SM_nWindowColors(w); i++) {
 c = SM_GetWindowColor(w, i);
 GR_SetDrawColor(w, c);
 while (dx <= 0.0) {
 GR_DrawLine(w, x, 0, x, depth);
 x++;
 dx += ddx;
 }
 dx -= 1.0;
 }
 /*
 ** Free the temporary window
 */

The TWS Window System Reference and Tutorial Release 4.0

105 Gadgets

 SM_FreeWindow(w);
 return 1;
}

12.4.6. GadgetType *SM_GetFocusGadget(WindowType *w)

Returns a pointer to the focus gadget for the window, or NULL if no gadget has the focus. The
window does not have to be the active window or mapped to the screen.

12.4.7. RectType *SM_GetGadgetBound(void *g)

Returns a pointer to the boundary rectangle of the gadget argument. g is a pointer to a specific
gadget, like a button or label. The returned rectangle is a pointer to the gadget structure field,
not a copy, and should be considered read-only.
The values of the rectangle coordinates are exactly as they were specified when the gadget was
created. This is not necessarily the current gadget position within the window. For example, if the
gadget was created with virtual coordinates, the virtual values (negative integers) are returned.

12.4.8. ColorType *SM_GetGadgetBackcolor(void *g)

Returns the background color for the gadget g.

12.4.9. ColorType *SM_GetGadgetForecolor(void *g)

Returns the foreground color for the gadget g.

12.4.10. int SM_GetGadgetMsg(void *g)

Returns the event type mask that defines what hardware events the gadget will respond to. For
example, a button gadget responds to LEFTBUTTONACTIVE events. Event constants are defined
in smevent.h. See also: SM_SetGadgetMsg; Events chapter.

12.4.11. GadgetType *SM_GetGadgetSuperclass(void *)

Returns the generic gadget field for any specific gadget. Given a pointer to a ButtonType button,
for example, returns button->gadget.

12.4.12. int SM_GetGadgetType(GadgetType *g)

Returns a constant identifying the type of gadget (button, label, etc.). Constants are defined in
smtypes.h :

Constant Value

BUTTON 1

CHECKBOX 2

SMSCROLLBAR 16

LABEL 4

EDITSTRING 5

PIXMAP 17

SLIDER 11

STRINGLIST 12

CHECKBOXGROUP 13

TEXTBOX 14

ROTATELIST 18

The TWS Window System Reference and Tutorial Release 4.0

106 Gadgets

STATICBORDER 19

HOTREGION 20

12.4.13. WindowType *SM_GetGadgetWindow(void *g)

Returns the parent window of the gadget passed in. The pointer g is a pointer to any TWS
specific gadget (like a button). This is a pointer to the system structure, not a copy of it, and
should be treated as read-only.

int ButtonProc(ButtonType *mybutton)
{

WindowType *gw;

gs = SM_GetGadgetWindow(mybutton);
if (gs == SM_FocusWindow()) {
....... ...

12.4.14. void SM_SetFocusGadget(void *gadget)

Sets the focus gadget for gadget’s parent window to gadget. If the gadget’s parent window is the
active window then the gadget is redrawn.

12.4.15. void SM_SetGadgetBackcolor(void *g, ColorType *color)

Sets the background color for the gadget g. This can be any system or window color but system
colors are recommended. The application of background colors varies from gadget to gadget.

12.4.16. int SM_SetGadgetDeleteproc(void *g, int (*f)())

Sets the function called whenever the gadget is deleted. The function is an int function whose
single argument is a pointer to a GadgetType. The function must remove the gadget from the
gadget list and free all resources used by the gadget. See also: Writing New Gadgets chapter in
the TWS Source Code Developers Manual.

12.4.17. int SM_SetGadgetDrawproc(void *g, int (*f)())

Sets the function that will actually draw the gadget. Currently the window gadget manager
ignores this field, so setting it will not change the appearance of the gadget. This behavior will be
changed in a future release. See also: Writing New Gadgets chapter in the TWS Source Code
Developers Manual.

12.4.18. void SM_SetGadgetFont(void *g, char *font)

Set the font used for the gadget’s text or label. If the gadget does not output text (a slider, for
example), the function is harmless. font is the filename, including path if necessary, to a font.

12.4.19. void SM_SetGadgetFontFacing(void *g, int facing)

Sets the facing (bold, italic) that will be applied to the text for the gadget. If the gadget doesn’t
output text then the function is harmless. Note: not all graphics kernel systems support font
facing attributes.

12.4.20. void SM_SetGadgetFontSize(void *g, int size)

Sets the size of the font that will be used for the gadget. Only valid if the gadget font is a stroked
font and the gadget outputs text; harmless otherwise.

12.4.21. void SM_SetGadgetForecolor(void *g, ColorType *color)

Sets the color used for the gadget’s foreground. Normally this is the text color for labels, buttons,
and so forth. The application of foreground colors varies from gadget to gadget.

The TWS Window System Reference and Tutorial Release 4.0

107 Gadgets

12.4.22. int SM_SetGadgetMsg(void *g, int evntmask)

Sets the event type mask that defines what hardware events the gadget will respond to. Multiple
event types can be specified by ORing the appropriate constants, in which case the gadget will
respond if any one of the events occurs. Event constants are defined in smevent.h. See also:
SM_GetGadgetMsg; Events chapter.

12.4.23. void SM_SetGadgetRedrawFlag(void *g, int flag)

Sets the redraw flag for the specific user gadget g to the value of flag. Any non-zero value for
flag is considered True. The argument g is a pointer to any specific user gadget, such as a
button. See also: SM_RefreshGadgets.

12.4.24. int SM_SetGadgetUserproc(void *g, int (*f)())

Sets the application function called when the gadget g is activated by the user. The result is the
same as if the function f was passed when the gadget was created. The function f must be an int
function whose argument(s) are appropriate for the specific user function attached to the generic
gadget g. See also: SM_GetGadgetType; Specific gadgets chapters.

The TWS Window System Reference and Tutorial Release 4.0

108 Label

13. Label

A label is a rectangular area that can contain a text string or graphics. There is no user action
associated with a label as there is with a button or checkbox. Labels can’t be selected and the
event system doesn’t notice activity occurring within a label.
A label’s bounding box can be bordered or unbordered. If bordered the window bounding rec-
tangle describes the outer bounds of the border, but drawing is done within the border; in effect,
pixels are lost on each edge. The size of the border depends on the bevel depth.
The bounding rectangle can be either in absolute window coordinates, where the positions rep-
resent window content relative pixels, or virtual window coordinates, where the positions are
given in 1/1000’s of the width or depth from the upper left corner of the window content. Virtual
coordinates are specified by using negative numbers in the range (-999 ... -1) for one or more of
the rectangle’s coordinates. Labels specified using virtual coordinates keep their same relative
positions in the window content region, though their absolute size and shape may change as the
window size and shape changes. Virtual coordinates are described in detail in the Gadgets
chapter.

13.1. Data Types

typedef struct _lbl {
 GadgetType *gadget; /* Generic gadget superclass */
 int boldflg; /* TRUE if string is bolded */
 int italflg; /* TRUE if string is italicized */
 int boxflg; /* TRUE if string is boxed */
 char *string; /* The text to be displayed */
 int align; /* Text alignment left right center */
 void *data; /* Application data */
 int (*graphproc)(struct _lbl *); /* Graphics label */
 int sculptype; /* Bordering method */
} LabelType;

Not all graphics kernel systems support text attributes like bolding and italics, in which case the
boldflg and italflg are ignored. If boxflg is non-zero then the boundary of the label is drawn in the
style specified by sculptype. Constants for supported styles are defined in smtypes.h:

Constant Value Description
SCULPTED 1 Recessed 3D beveled

FOURD 2 Not implemented
FLAT 3 Plain black solid line

BEVELED 4 Raised 3D beveled
CHISELED 5 Chiseled line. Ignores the bevel depth, requires 2 pixels of border all

around.

Text alignment constants are also defined in smtypes.h. Possible values are:

The TWS Window System Reference and Tutorial Release 4.0

109 Label

Constant V
a
l
u
e

Description

ALIGNLEFT 0 Draw text from left edge of boundary rectangle
ALIGNCENT

ER
1 Center the text within the boundary rectangle

ALIGNRIGHT 2 Draw text with end of the string on the right edge of the
boundary

If the text is wider than the boundary (bordered or not) it is clipped within it. The data field is for
application data and is provided mostly for symmetry with other TWS gadgets.
The graphproc is an application subroutine for drawing graphics within a label boundary. If
there’s a graphproc attached to a label then the label string is ignored and the graphproc is called
instead. The graphproc can do anything (it doesn’t have to draw graphics, although if it doesn’t
there won’t be anything displayed in the label), but typically will take the label, cast it to a
window using the SM_GadgetToWindow function, perform some quick drawing, free the
window and return.
A graphproc label is similar to the Pixmap gadget. The main difference is that a Pixmap is a static
image while the graphproc label is recreated every time it’s redrawn, and so is potentially
different each time.

13.2. Interface Functions smlabel.h

13.2.1. LabelType *SM_CreateLabel(WindowType *w, RectType *r, char *str, int
(*graphproc)(), int align, int boldflg, int italflg, int boxflg, void *data)

Create a new label gadget and return a pointer to it.

wwindow the label will belong to;
r................boundary of the label in window coordinates;
sstring to be displayed in the label;
graphproc ..If not NULL, the function for drawing graphics within the label bounds. The

function must ‘cast’ the label to a window to draw inside it (see
SM_GadgetToWindow).

alignText alignment within the label, either ALIGNLEFT, ALIGNRIGHT or
ALIGNCENTER. The constants are defined in smtypes.h

boldflgIf True the label string has the bold attribute;
italflgIf True the label string is italicized;
boxflgIf True the label is outlined
dataApplication data

13.2.2. void SM_DestroyLabel(LabelType *label)

Frees a label and all resources allocated to it. If the label’s parent window is the focus window
then the window is redrawn immediately.

13.2.3. int SM_EraseLabel(LabelType *label)

Clears the label to the window content color. This does not remove the label string or graphics
procedure, so the next time the window is refreshed the label will be restored.

The TWS Window System Reference and Tutorial Release 4.0

110 Label

13.2.4. int SM_GetLabelBoldflag(LabelType *label)

Returns the value of the label’s boldflg field, either True or False.

13.2.5. int SM_GetLabelBoxflag(LabelType *label) (macro)

Returns the value of the label’s boxflg field, either True or False.

void SM_GetLabelBound(LabelType *label, RectType *r)

Returns the rectangle boundary for the label. The rectangle coordinates are relative to the label’s
parent window. See also: SM_GetGadgetBound

13.2.6. void *SM_GetLabelData(LabelType *label)(macro)

Returns the data field of the label. If there is no data attached to the label then NULL is returned.

FontType SM_GetLabelFont(LabelType *label) (macro)

Returns the font used to draw the label. See also: SM_GetGadgetFont

13.2.7. int SM_GetLabelItalflag(LabelType *label)

Returns the value of the label’s italflg field, either True or False.

GadgetType *SM_GetLabelGadget(LabelType *label) (macro)

Returns the superclass gadget for the label. See also: SM_GetGadgetSuperclass

13.2.8. char *SM_GetLabelString(LabelType *label) (macro)

Returns the string attached to the label. If there is no string (as when the label is a graphics
label) then NULL is returned.

13.2.9. int SM_SetLabelBoxflag(LabelType *label, int flag)

Sets the value of the label’s boxflg field to flag, which must be either True or False.

13.2.10. int SM_SetLabelBoldflag(LabelType *label, int flag)

Sets the value of the label’s boldflg field to flag, which must be either True or False.

13.2.11. void SM_SetLabelData(LabelType *label, void *data) (macro)

Sets the data field for the label. Data is often a pointer to a user data structure but the
interpretation is up to the application.

void SM_SetLabelFont(LabelType *label, FontType font)

Sets the font for the label’s text. See also: SM_SetGadgetFont

13.2.12. void SM_SetLabelGraphproc(LabelType *label, int (*f)())

Sets the graphics procedure for a label to f. If a label has a non-NULL value for its graphproc
field then the procedure is called instead of drawing a string. A label can be changed from a
graphics to a text label by passing NULL as the function argument of SM_SetLabelGraphproc.

13.2.13. int SM_SetLabelItalflag(LabelType *label, int flag)

Sets the value of the label’s italflg field to flag, which must be either True or False.

void SM_SetLabelBound(LabelType *label, RectType *r)

Sets the rectangle to be used for the label boundary. The rectangle coordinates are relative to
the label’s parent window. See also: SM_SetGadgetBound, SM_AdjustGadgetBound

The TWS Window System Reference and Tutorial Release 4.0

111 Label

13.2.14. void SM_SetLabelSculptType(LabelType *label, int type)

Sets the sculpting type to type. The type should be one of the constants described above.

13.2.15. int SM_SetLabelString(LabelType *label, char *string)

Sets the string attached to the label to string. If there is already a string attached to the label it is
freed.

The TWS Window System Reference and Tutorial Release 4.0

112 Button

14. Buttons

A button is a window control type that simulates a spring-loaded pushbutton. The application
attaches a function to the button that is called whenever the button is ‘pushed.’ A button is
pushed by clicking the left mouse button on it; pressing the left mouse button down causes the
button to be ‘pressed into’ the screen. When the mouse button is released, if the cursor is still
inside the button then the button procedure is called, otherwise the button is restored and no
action is taken. If the button is defaulted then it is also sensitive to the Enter key being pressed.
A button can have a text label, a graphic facing and/or a Pixmap facing. The text label is as-
signed when the button is created. The function for applying a graphic is supplied by the
application and is attached to the button using the function SM_SetButtonGraphproc. To draw
a graphic in a button the graphics procedure ‘casts’ the button to a window using the
SM_GadgetToWindow function, then use graphics routines to decorate the button face. See
the Gadgets section and the example code in the distribution.
A Pixmap can be applied to the button face using the function SM_SetButtonPixmap. See the
Pixmap section for information on creating TWS Pixmaps.
A single button can use any or all of these decorations. If a Pixmap is attached to a button, it is
displayed first. A graphics function draws on top of that, and the text is drawn last. Finally, the
position of all the visual elements of the button can be controlled so that, for example, a pixmap
image of an object can appear next to the text name of it.
A button’s position can be either fixed or dynamic (called virtual positioning) within the window’s
content region. For fixed size and position, the button rectangle is specified using window-
content-relative absolute coordinates, for example (1,1,50,25). Virtual size and position is
specified by using negative coordinates for the button rectangle. A negative coordinate is
decoded as thousandth’s of the distance from the upper left corner in the X or Y direction. For
example, (1,1,-999,25) specifies a button whose upper left corner is 1 pixel from the upper left
corner of the window content region, and whose lower right corner is as wide as the content
region and 25 pixels from the top edge. The rectangle (-500,-500, -999, -999) fills the lower right
quadrant of the content region no matter what the window size is. For virtual positioning the
range of allowed values is (-999 ... -1). See the Gadgets chapter for more details.

14.1. Data Types

typedef struct _but {
 GadgetType *gadget; /* 'Superclass' gadget */
 char *label; /* Text for button interior */
 int align; /* Button label horizontal alignment*/
 ColorType *color; /* Button face color */
 ColorType *pcolor; /* Button face color when pushed */
 ColorType *up_bevel_color; /* Bevel colors */
 ColorType *down_bevel_color;
 ColorType *labelcolor; /* Color for text label */
 ColorType *plabelcolor; /* Color for text label when pushed */
 void *data; /* User-specified data for button */
 PixmapType *pixmap; /* Button pixmap */
 int pmx, pmy; /* Pixmap offset into the button */
 int active; /* if TRUE button is active */
 int isdefault; /* if TRUE button activate by Enter */
 int pushed; /* If True button is pushed in */
 int (*graphproc)(struct _but *); /* Draw in the button */
} ButtonType;

The TWS Window System Reference and Tutorial Release 4.0

113 Button

The button label is a text string drawn in the center of the button. If the string is wider than the
button it’s clipped within it.
A button has a separate set of colors for the normal and “pushed” states. color, labelcolor and
the up and down bevel colors are the normal state colors, while pcolor, plabelcolor and the bevel
colors (used on the opposite corners) are the pushed state colors. The graphproc is the function
that draws a graphic in the button and is NULL by default. pixmap also defaults to NULL.
If active is false then the button is disabled and won’t respond to user input. The default is True.
When isdefault is True the button responds to the Enter key as well as mouse button press, and
is also drawn with a special sculpting to indicate it’s a default button. Finally, when pushed is
True the button is in a pressed state. The application wouldn’t ordinarily notice this state since
the button is restored to normal when the button callback function returns.

14.2. Button Callback Function
The user function attached to the button is called each time the button is activated. It is an int
function whose argument is a pointer to a ButtonType. The button has a ‘pressed in’ look while
the user procedure is executing. The button is restored to its normal sculpted appearance when
the user function returns.
The button callback function can do just about anything, including closing the button’s parent
window (there’s special logic in the TWS event processor for handling this).

14.3. Default Button
If a button is a default button then the button is sensitive not only to mouse events within its
boundary, but also to the Enter key. If the Enter key is pressed when the button’s parent window
is active, then the button’s user procedure is called.
Visually, a default button has an extra bevel drawn around it. If more than one button in a win-
dow is a default button then all of them will be drawn with the default button visual; however,
only the first button’s user procedure, determined by the order the buttons were created, will be
called. It is usually an error to classify more than one button as a default button. A button is
made a default button by calling the SM_SetButtonIsdefault function.

14.4. Button Colors
A button has two sets of colors; one when the button is off, and the other when it is pushed in or
selected. The application can set the color for the button face and text for both situations. Be
default, the button text color when off is black and the face color is the window’s content color.
When pushed the text color is white and the face color is dark gray. The functions
SM_SetButtonColor, SM_SetButtonFaceColor, SM_SetButtonPushedColor, and
SM_SetButtonPushedLabelColor set these colors.
For buttons, the generic gadget functions SM_SetGadgetBackcolor and
SM_SetGadgetForecolor modify the button’s unpushed face color and label color, respectively.

14.4.1. Transparent Buttons

A button can also be transparent. A transparent button shows an outline and whatever text,
pixmaps and graphics the application draws in it, but otherwise the background shows through.
This is convenient for placing buttons over imagery. To make a button transparent, set the
background color to TRANSPARENT:

SM_SetButtonFaceColor(TRANSPARENT);

Only a button’s background color can be transparent, and the pushed and non-pushed
background colors must be set separately (if only one is set to TRANSPARENT then the
transparency effect won’t work).

The TWS Window System Reference and Tutorial Release 4.0

114 Button

Pixmaps in Buttons
An application can decorate a button by applying a pixmap to it. The pixmap can be any size and
can be positioned anywhere within the button boundary, with (0,0) as the upper-left corner of
the button. The pixmap is clipped at the button boundary. The button beveling is drawn inside
the button boundary and after the pixmap is placed so the application should allow space as
necessary. The TWS function SM_SetButtonPixmap attaches the pixmap, which must already
be created:

RectType r;
ButtonType *button;
PixmapType *pixmap;
/*
** Set the rectangle for the button. Make it a little wide for the pixmap
*/
r.Xmin = r.Ymin = 10;
r.Xmax = r.Xmin + GR_StringWidth("New file") + 27;
r.Ymax = r.Ymin + 24;
button = SM_CreateButton(w,
 &r,
 "New file",
 NULL,
 ButtonUserproc);
/*
** Align the button text to the right instead of middle. The pixmap will
** be on the left edge
*/
SM_SetButtonAlign(b1, ALIGNRIGHT);
/*
** Create a pixmap from an existing file
*/
pixmap = SM_ReadPixmap(“\\pixmaps\\folder.pxm”);
/*
** Attach the pixmap to the button. Offset it from the edge so the button
** bevel doesn’t clobber it
*/
SM_SetButtonPixmap(b1, pm, 4, 4);

User Graphics in Buttons
For even more flexibility, an application can create a routine to draw inside a button as if it were
a graphics canvas. The routine is attached to the button using the SM_SetButtonGraphproc
function:

button = SM_CreateButton(w, &rect, “My Button”, NULL, MyButtonProc);
SM_SetButtonGraphproc(b, ButtonGraphProc);

The graphics procedure (ButtonGraphProc in the example) is an int function with a ButtonType
pointer argument. When called, the argument will reference the button that was pushed. In order
to draw, the function must first ‘cast’ the button to a window using the function
SM_GadgetToWindow:

int ButtonGraphProc(ButtonType *button)
{

WindowType *w;

w = SM_GadgetToWindow(button);

SM_GadgetToWindow sets the window and gives it a graphics canvas that’s the same size as
the button. If the button’s parent window had a graphics canvas with a color palette, w gets a
copy of the color palette as well. At this point the window w can be drawn into using the TWS
graphics functions. Location (0,0) is the upper-left corner of the button, and all graphics will be
clipped to the button boundary.

The TWS Window System Reference and Tutorial Release 4.0

115 Button

Before returning, the window w must be freed:

SM_FreeWindow(w);

14.5. Active and Inactive Buttons
The application can make a button inactive, then reactivate it at any time. By default a button is
active as soon as it is created (or as soon as its parent window becomes active). When a button
is inactive, its face is ‘greyed’ and it will not respond to input events. The function
SM_DeactivateButton makes a button inactive, and SM_ActivateButton reactivates it.

Button Repeat
Setting a button’s repeat field causes a pushed button’s action to repeat while the button is
pushed, following an initial delay of about a half-second. If the mouse button is released the
repeat action stops. If the mouse cursor is moved outside of the button while the mouse button
is pressed, the button action pauses until the cursor moves back inside the button, or the mouse
button is released.
Button repeat is off by default. It can be set using the macro SM_SetButtonRepeat.

14.6. Interface Functions prototypes in smbutton.h

14.6.1. SM_ActivateButton(ButtonType *b)

Activates an inactive button. When a button is inactive its face is ‘greyed’ and it doesn’t respond
to input events. If the button is already active then nothing happens. If the button’s parent
window is the active window then the button is immediately redrawn.

14.6.2. ButtonType *SM_CreateButton(WindowType *w, RectType *r, char *label,
void *data, int (*action)())

Create a new button and return a pointer to it. If the parent window w is not NULL then the new
button is attached to it. action() is an integer function whose single argument is a pointer to a
ButtonType. The button rectangle r is specified in window content relative coordinates. If any
coordinate of r is negative then it is treated as a virtual coordinate as described previously.

14.6.3. int SM_DeactivateButton(ButtonType *b)

Makes the button ignore user events. The button face is ‘grayed’ to signal that it will not respond
to user actions. If the button is already deactivated then nothing happens.

14.6.4. int SM_DestroyButton(ButtonType *b)

Remove the button from its parent window and free all memory associated with it. Any user
memory associated with the button’s data field is not automatically recovered -- the application is
responsible for that. If the button’s parent window is the focus window then the window is
redrawn to remove the button from the display.

14.6.5. int SM_GetButtonActive(ButtonType *b) (macro)

Returns the status of the button’s active field. This is True if the button is active, or False if not.

14.6.6. ColorType *SM_GetButtonColor(ButtonType *b) (macro)

Returns the button face color. This is a pointer to the button field itself, not a copy. Any changes
to the data pointed to by the return value of this function changes the button color field.

The TWS Window System Reference and Tutorial Release 4.0

116 Button

14.6.7. void *SM_GetButtonData(ButtonType *b) (macro)

Returns the data field of the button.

14.6.8. int SM_GetButtonIsdefault(ButtonType *b) (macro)

Returns True if the button is a default button, False otherwise.

14.6.9. char *SM_GetButtonLabel(ButtonType *b) (macro)

Returns the label field of the button. This is not a copy of the label but the label pointer itself, so
modifications to the string returned will modify the button label. Changes will not be apparent
until the button is redrawn, however.

14.6.10. ColorType *SM_GetButtonLabelcolor(ButtonType *b) (macro)

Returns the color that the button’s label is drawn in.

14.6.11. ColorType *SM_GetButtonPcolor(ButtonType *b) (macro)

Returns the face color for the button when it’s ‘pushed’.

14.6.12. PixmapType *SM_GetButtonPixmap(ButtonType *b) (macro)

Returns a pointer to the pixmap field of the button, or NULL if there is no pixmap attached to the
button.

14.6.13. ColorType *SM_GetButtonPlabelcolor(ButtonType *b) (macro)

Returns the label color for the button when it’s ‘pushed’.

14.6.14. int SM_SetButtonActive(ButtonType *b, int a)

Sets the button’s active field to a, which must be either True or False. Returns a.

14.6.15. int SM_SetButtonAlign(ButtonType *b, int alignment)

Sets the horizontal alignment for the button’s text element. Like labels, a button’s text can be
either left or right aligned, or centered in the button. alignment must be one of the constants
ALIGNLEFT, ALIGNRIGHT, or ALIGNCENTER.

14.6.16. int SM_SetButtonColor(ButtonType *b, ColorType *color)

Sets the button face color to the new value.

14.6.17. int SM_SetButtonData(ButtonType *b, void *data) (macro)

Sets the button’s data field to the new value. data is usually a pointer to a user-defined data
structure. The memory referenced by data must be static.

14.6.18. void SM_SetButtonGraphproc(ButtonType *b, int (*proc)()) (macro)

Sets the button’s graphics procedure to proc. If proc is NULL then the button will revert to a
standard text button.

14.6.19. int SM_SetButtonIsdefault(ButtonType *b, int d)

Sets the value of the button’s isdefault field to d, which must be either True (non-zero) or False
(zero).

14.6.20. int SM_SetButtonLabel(ButtonType *b, char *label)

Changes or sets the button’s label field to the specified string. If the button already has a label
then it is freed and its memory reclaimed before setting the new string. The button makes a copy

The TWS Window System Reference and Tutorial Release 4.0

117 Button

of the string for itself. If the button’s parent window is the focus window then the button is
redrawn with the new label.

14.6.21. ColorType *SM_SetButtonLabelcolor(ButtonType *b, ColorType *c)

Sets the color that will be used to draw the button label when the button is not pushed. c may be
either a system or window color. If the button is part of the current active window, the button is
redrawn to reflect the new color.

14.6.22. void SM_SetButtonPixmap(ButtonType *b, PixmapType *pmap, int x, int y)

Attaches the pixmap pmap to the button’s pixmap field. (x,y) is the location within the button
where the top-left corner of the pixmap will be. (0,0) is the upper-left corner of the button. If
there is already a pixmap attached to the button it’s lost. If pmap is NULL then any existing
pixmap is discarded, so be sure to get and free a button’s pixmap before clearing the button
pixmap field:

pmap = SM_GetButtonPixmap(button);
SM_SetButtonPixmap(button, NULL, 0, 0);
SM_DestroyPixmap(pmap);

14.6.23. int SM_SetButtonProc(ButtonType *b, int (*action)()) (macro)

Sets the button’s action() field (the callback function) to the new function.

14.6.24. ColorType *SM_SetButtonPushedColor(ButtonType *b, ColorType *c)

Sets the color that will be used to draw the button background when the button is pushed in. c
may be either a system or window color.

14.6.25. ColorType *SM_SetButtonPushedLabelColor(ButtonType *b, ColorType *c)

Sets the color that will be used to draw the button label when the button is pushed in. c may be
either a system or window color.

14.6.26. int SM_SetButtonRect(ButtonType *b, RectType *r)

Changes the button rectangle, essentially changing the size and/or position of the button. All
other button parameters are unchanged. If the button is in the focus window then it’s redrawn
immediately at the new size/position.

void SM_SetButtonRepeat(ButtonType *b, int flag) (macro)

Sets the repeat field for the button to flag. The value is interpreted as either True (non-zero) or
false (0).

14.7. Examples
The following example programs in the TWS distribution are relevant examples of using buttons:
WINTEST6.C includes an example of a default button;
WINTESTH.C shows placing a pixmap in a button along with text, and varies the button label
alignment;
CALC.C demonstrates virtual coordinates for buttons and button callback functions;
ICONEDIT.C also uses pixmaps in buttons, modifies button face colors, and has a number of
button callback examples.

The TWS Window System Reference and Tutorial Release 4.0

118 Checkbox

15. Checkbox

A checkbox is a toggle-type gadget; it can be either on or off. It can have one of several
appearances, including beveled square or circle, or a “button”-look. If the checkbox is on then
the checkbox is ‘depressed’ into the screen and its face color is the focus window titlebar color. If
off then the face color is the workspace color and the checkbox is ‘raised’ from the screen. Each
time the user clicks on a checkbox its state toggles.
When the checkbox is created the application provides a rectangle to enclose the checkbox label
and decoration. The rectangle is the sensitive region for the checkbox and the checkbox and its
label are clipped within it. A checkbox is toggled by clicking the left mouse button anywhere in
the sensitive region; typically, either on the checkbox graphic or on the label.
Checkboxes can be grouped so that only one box of the group can be active at a time; see the
section on Checkbox Groups that follows.

15.1. Data Types

typedef struct _cb {
 GadgetType *gadget; /* Superclass gadget */
 char *label;
 int type; /* Visual type */
 int buttonpos; /* Position for label */
 int selected; /* TRUE if button checked */
 void *data; /* User-specified data for button */
 void *group; /* Checkbox grouping, if any */
} CheckboxType;

The type field identifies the visual type the checkbox will use. The default visual type is a square
decoration next to the label. Alternative styles are defined in smchkbx.h:

Visual type constant Value Definition
SMCBOXSQUARE 0 This is the default visual style as illustrated above.
SMCBOXBUTTON 1 The checkbox’s appearance is the same as the button, but stays

pressed in when the checkbox is active.
SMCBOXOVAL 2 As illustrated above, except the visual next to the label is a

raised or depressed circle rather than square.

The system constant SMDEFAULT can be used to select the default visual style.
The buttonpos field determines where in the checkbox boundary the checkbox graphic will be
drawn. If the position is ALIGNLEFT the checkbox graphic will be drawn at the left edge of the
boundary with the label to the right of it. If ALIGNRIGHT the checkbox graphic is drawn on the
right edge of the boundary and the label is drawn to the left of it. If the visual type is
SMCBOXBUTTON, the label is aligned either left or right in the button outline. Note that
ALIGNCENTER is valid only for checkboxes using the SMCBOXBUTTON visual style.
If selected is True then the checkbox is ‘checked’, otherwise the checkbox is not.
group is a pointer to the checkbox group the checkbox belongs to, or NULL if the checkbox
doesn’t belong to a group. See the section of Checkbox Groups that follows.

The TWS Window System Reference and Tutorial Release 4.0

119 Checkbox

15.2. Checkbox Callback Procedure
The checkbox callback is an int function whose argument is a pointer to a CheckboxType. The
checkbox user function is called each time the checkbox is selected, after the system has toggled
the selected state and before the system has redrawn the checkbox graphic to reflect the new
state. This allows the user function to modify the state, if desired, before the checkbox is
redrawn.

...
int CheckboxCallback(CheckboxType *chkbox)
{

if (SomeOtherProgramCondition) {
SM_SetCheckboxState(chkbox, True);

}
UpdateProgramStatus(SM_GetCheckboxState(chkbox));

}

In the example, the checkbox callback tests some other program condition to see if the
checkbox’s state should be allowed to go False. Then the state of the checkbox is stored by the
application.

15.3. Interface Functions smchkbx.h

15.3.1. CheckboxType *SM_CreateCheckbox(WindowType *w, RectType *bound,
char *label, int buttonpos, int state, void *data, int (*f)())

Create a new checkbox and return a pointer to it.

wparent window for the checkbox;
boundsensitive region boundary for the checkbox in window-relative coordinates.
buttonpos .either ALIGNLEFT or ALIGNRIGHT (defined in smtypes.h), determines whether

the checkbox will be to the left of the bounding box or to the right of it;
statethe checkbox’s initial state. Should be either True (for initially on) or False

(initially off);
dataa pointer to user data;
fthe user function called whenever the checkbox is selected.

15.3.2. int SM_DestroyCheckbox(CheckboxType *c)

Removes the checkbox c from the control list of its parent window and frees memory allocated to
it.

15.3.3. void *SM_GetCheckboxData(CheckboxType *c) (macro)

Returns the data field of the checkbox c.

15.3.4. char *SM_GetCheckboxLabel(CheckboxType *c) (macro)

Returns the character string label from the checkbox c.

15.3.5. int SM_GetCheckboxState(CheckboxType *c) (macro)

Returns the selected state from the checkbox c. This is True if the checkbox is on, False
otherwise.

15.3.6. int SM_GetCheckboxType(CheckboxType *c) (macro)

Returns the value for the checkbox visual type.

The TWS Window System Reference and Tutorial Release 4.0

120 Checkbox

15.3.7. int SM_SetCheckboxData(CheckboxType *c, void *d) (macro)

Sets the data field of the checkbox c to the pointer d. The original field value is discarded.

15.3.8. int SM_SetCheckboxLabel(CheckboxType *c, char *s)

Sets the label field of the checkbox c to the string s. The string is duplicated into the checkbox.
The previous label, if any, is discarded. If the checkbox is in the focus window then the checkbox
is immediately redrawn to display the new label.

15.3.9. int SM_SetCheckboxProc(CheckboxType *c, int (*f)()) (macro)

Sets the user procedure called when the checkbox is selected to the function f. f must be an int
function whose argument is a pointer to a CheckboxType.

15.3.10. int SM_SetCheckboxState(CheckboxType *c, int state)

Sets the checkbox selected field to state. selected can be either True or False. If the checkbox is
in the focus window then the checkbox is immediately redrawn to reflect the new state.

15.3.11. void SM_SetCheckboxType(CheckboxType *c, int type)

Sets the checkbox visual type to type. Valid constants for the type are defined above. If the
checkbox is in the focus window then the checkbox is redrawn to reflect its new visual.

16. Checkbox Group

A CheckboxGroup is a collection of checkboxes. The group can have any number of individual
checkbox gadgets, but only one of them can be active at any time.
Checkbox groups can be bordered or not, and titled or not. If the checkbox group variable outline
is True then the checkbox group boundary and title, if any, is drawn; otherwise neither are
drawn. If the checkbox group title is NULL then no title is drawn in either case. There is no way
to draw a title for a checkbox group without also drawing the border.
All checkbox operations from the previous section can be applied to the individual checkboxes in
a group. This section only describes data and functionality specific to groups.
Note: This type of control is sometimes called “radio buttons.”

16.1. Data Types

typedef struct _group {
 GadgetType *gadget; /* Superclass */
 CheckboxType *selected; /* Active checkbox */
 int selfadjust; /* If true group boundary autoadjust*/
 int outline; /* If true group bounds is drawn */
 char *title; /* Group title */
} CheckboxGroupType;

The selected field points to the individual checkbox that is selected; all other checkboxes in the
group are off. If selected is NULL then no checkboxes in the group are on.
selfadjust, if True, causes the checkbox group boundary to automatically adjust whenever a new
checkbox is added to the group. This is the boundary that is drawn if the outline field is true. The
CheckboxGroup gadget calculates the boundary as the smallest axis-aligned rectangle (a
rectangular parallelepiped, to be purely technical about it) that encloses all the checkbox
boundaries in the group. Four pixels are added all around the boundary. The boundary can only
get bigger.

The TWS Window System Reference and Tutorial Release 4.0

121 Checkbox

If outline is True then the checkbox group boundary and title, if any, are drawn around the group
of checkboxes. Note that no tests are made that the boundary rectangle encloses checkboxes
only. Particularly for selfadjusted boundaries, the boundary rectangle may pass through other
window gadgets unless the individual checkboxes are positioned carefully.

16.2. CheckboxGroup Callback Procedure
There is no callback procedure for the checkbox group. The individual checkbox callback
functions are executed when checkboxes are selected. When a user selects a new checkbox, the
previous checkbox selection state is toggled off and it’s callback function is called. Then the new
checkbox is toggled on, then its callback function is called.
The value returned by the second checkbox callback function (the one activated) is the one
returned to the application via the event processor.

16.3. Interface Functions smchkbx.hsmchkbx.h

16.3.1. CheckboxType *SM_AddCheckbox(CheckboxGroupType *g, RectType *box,
char *label, int buttonpos, int selected, void *data, int (*f)())

Creates a new checkbox, adds it to the end of the checkbox group list g, and returns a pointer to
the individual checkbox created. The parent window for the checkbox is taken from the checkbox
group.

gCheckbox group to attach new checkbox to.
box............Boundary for the individual checkbox in window coordinates.
labelCharacter string label for the new checkbox.
buttonpos ..ALIGNLEFT or ALIGNRIGHT, for determining position within the box of the

checkbox button.
selectedTrue if the new checkbox is the one that’s on, False otherwise. If more than one

checkbox is added to the group as on, the latest one has precedence.
dataUser data.
f................User function called whenever the individual checkbox is selected.

16.3.2. CheckboxGroupType *SM_CreateCheckboxGroup(WindowType *w, RectType
*r, char *label, int draw, int (*f)())

Creates a new checkbox group and returns a pointer to it. The checkbox group and all
checkboxes in the group will be attached to window w.

wParent window for the checkbox group and all checkboxes in the group;
r................Boundary rectangle for the group. If the Xmax or Ymax field of the rectangle is 0

then the checkbox group will set the selfadjust field and the boundary will be
automatically adjusted to enclose all checkboxes added to the group. In any case
the Xmin and Ymin fields are interpreted as the upper-left corner of the group
bound.

labelText label for the group. If the draw field is True and the label is not NULL, the
text label is drawn using the system font in the top middle of the group
boundary rectangle.

draw..........If True, the group boundary and label will be drawn;
f................Checkbox group callback procedure. Not currently used. Set to NULL for future

compatibility.

16.3.3. int SM_DestroyCheckboxGroup(CheckboxGroupType *g)

Destroys the checkbox group g and all checkboxes grouped with g.

The TWS Window System Reference and Tutorial Release 4.0

122 Checkbox

16.3.4. CheckboxType *SM_GetCheckboxSelected(CheckboxGroupType *g)

Returns a pointer to the checkbox of the group g that is on.

16.3.5. int SM_RemoveCheckbox(CheckboxType *cb)

Removes the checkbox cb from its group, if any.

16.3.6. int SM_SetCheckboxSelected(CheckboxGroupType *g, CheckboxType *c)

Makes the checkbox c the selected checkbox of group g. The checkbox must be in the group; if it
isn’t, the selected checkbox from group g is unchanged and False is returned.

16.3.7. int SM_UngroupCheckboxGroup(CheckboxGroupType *g)

Destroys the checkbox group g without destroying the individual checkboxes associated with g.
The individual checkboxes are ungrouped but not otherwise disturbed.

The TWS Window System Reference and Tutorial Release 4.0

123 Checkbox Groups

17. Slider

A slider is a control for selecting within a fixed range of values. Visually the control portion of the
slider rests inside a fixed-length ‘channel.’ The control’s position within the channel indicates the
value of the control. The length of the slider channel and the values at the minimum and
maximum positions are all defined by the application. The length and position of the slider
thumbbar is calculated by the system based on application-supplied parameters. A slider can be
either vertical, as illustrated, or horizontal.
The size of the thumbbar relative to the size of the slider channel is automatically adjusted to
show the ratio of the slider’s range to the range within a ‘page,’ described below. The user
controls a slider by either clicking the left mouse button on either end of the thumb bar, or by
dragging the thumb bar control in its channel. If all the slider’s range is in the page then the
thumbbar is the same size as the channel and no adjustment is possible.

17.1. Data Types

typedef struct _sli {
 GadgetType *gadget; /* Superclass gadget */
 RectType thumbbar; /* Slide thumbbar region */
 int type; /* Horizontal or Vertical */
 int min; /* Slider value at minimum */
 int max; /* Slider value at maximum */
 int scale; /* Size of jump in user units */
 int position; /* min <= position <= max */
 int twidth; /* Width in pixels of thumbbar */
 int pixels; /* Number of pixels free movement */
 int state;
 double inc; /* Units/pixel for thumbbar moves */
 void *data; /* User-specified data for button */
} SliderType;

The channel rectangle is supplied by the application, but the thumbbar rectangle is calculated by
the slider based on the min, max, and scale parameters. The width of the thumbbar is designed
to provide a visual clue of the ratio of the range of values controlled by the slider (max-min) to
the number of values in a single ‘page’ (scale). position is the data value for the current slider
position. scale is the number of user units in a single ‘page.’ twidth is the free dimension of the
thumb bar, and pixels is the number of pixels in the channel not covered by the thumb bar.
These values are calculated internally.

17.2. Slider Callback Function
The slider’s application callback function is called whenever the position field of the slider
changes. The function is an int function whose argument is a pointer to a SliderType.
Dragging the slider’s thumbbar may or may not result in a call to the function, since the inc value
may dictate that it takes a move over multiple pixels to effect a single unit change in the slider.
In most cases however dragging the slider thumbbar results in a torrent of calls to the user
function. If the user function doesn’t process these calls very quickly then the slider will seem to

The TWS Window System Reference and Tutorial Release 4.0

124 Checkbox Groups

behave sluggishly. For example, using a slider to scroll a large image would take far too long if
done on a pixel-by-pixel basis.
The slider’s state field is used to restrict processing to particular slider actions. If the slider
thumbbar is being dragged by the user, the state’s value is SLIDERTHUMBSTATE. If the slider
has just been ‘jumped’ down the state’s value is SLIDERJUMPDOWNSTATE and so forth. These
constants are defined in smslider.h.

State constant Value Definition
SMSLIDERTHUMBSTATE 1 The user is dragging the slider thumbbar. The

slider’s position value has been updated but may
change again very quickly. If processing a change
in position is very time consuming (e.g.,
redrawing a large graphic), the callback function
will probably return immediately if this is the
slider’s state. Processing that can be done very
quickly, like modifying a string in a label, could be
handled.

SLIDERTHUMBDONESTATE 4 The user has finished dragging the slider
thumbbar. The slider is finished processing its
event.

SLIDERJUMPUPSTATE 2 The user clicked the slider channel above the
thumbbar position. The slider position has been
updated and the slider thumbbar redrawn.

SLIDERJUMPDOWNSTATE 3 The user clicked the slider channel below the
thumbbar position. The slider position has been
updated and the slider thumbbar redrawn.

17.3. Interface Functions smslider.h

17.3.1. SliderType *SM_CreateSlider(WindowType *w, int type, RectType *box, int
min, int max, int size, int initpos, void *data, int (*f)())

Create a new slider and return a pointer to it.
The slider is somewhat more complex to set up than other gadgets. In particular, the meanings
of the min, max, and size arguments bear some explanation.
The min argument is the value that is to be the slider’s position value (see the Data Type section
above) when the slider thumbbar is at its leftmost position (HORIZONTAL slider) or topmost
position (VERTICAL slider). The max value is the slider’s position value at the other end.
However, the slider will also work properly if the min value is greater than the max value. For
example, potentiometer-type sliders usually have their minimum value at the bottom; you slide
the pot up to increase the value. For this type of control set min to the potentiometer’s maximum
value, and max to the potentiometer’s minimum value.
The size argument is the number of application data items in a ‘page.’ This is an idea from
window scrolling. For example, if you’re using a vertical slider to scroll some text (see the Text
gadget, for example), you’d set size to the number of lines that fit in your window (and min
would be 0 and max would be the total number of lines in your text buffer). When the user clicks
in the slider channel above or below the thumbbar, the position field is adjusted by size either up
or down. For the previous potentiometer example, size would be set to 1. It must not be less
than 1.

The TWS Window System Reference and Tutorial Release 4.0

125 Checkbox Groups

w is the window the slider is attached to. type is the type of slider, either HORIZONTAL or
VERTICAL (constants defined in smslider.h). The box is the rectangle for the slider’s channel in
window coordinates. initpos is the initial slider position value. data is a pointer to user data.
f is the application function called whenever the slider’s value is changed. If the slider is being
dragged by the user then the function is called repeatedly for each value change as the thumb
bar is moved. The function must be an int function whose single argument is a pointer to a
SliderType.

17.3.2. void SM_DestroySlider(SliderType *s)

Delete the slider s by removing it from its parent window’s control list and recover memory used
by it The SliderType pointer s is the pointer returned by the SM_CreateSlider function.

17.3.3. void *SM_GetSliderData(SliderType *s)

Returns the data field for the slider.

17.3.4. int SM_GetSliderMax(SliderType *s)

Returns the value of the max field of the slider, which is the value of the slider when the
thumbbar position is at the very bottom|right of the slider channel.

17.3.5. int SM_GetSliderMin(SliderType *s)

Returns the value of the min field of the slider, which is the value of the slider when the
thumbbar position is at the very top|left of the slider channel.

17.3.6. int SM_GetSliderPosition(SliderType *s)

Returns the value of the position field of slider s.

17.3.7. int SM_SetSliderChannel(SliderType *s, RectType *r)

Changes the slider’s channel to the rectangle r, in coordinates relative to s’s parent window. If
the slider’s parent window has the focus then the slider is redrawn.

17.3.8. int SM_SetSliderData(SliderType *s, void *d)

Sets the data field of the slider s to the pointer d. Usually gadget data are pointers to user-
defined data structures. The original value of the data field is discarded.

17.3.9. int SM_SetSliderMinMax(SliderType *s, int min, int max)

Sets the min field of the slider s to min, and the max field to max. The previous values are
discarded. If the slider s is in the focus window then the slider thumb bar is recalculated and the
slider is redrawn.

17.3.10. int SM_SetSliderPosition(SliderType *s, int p)

Sets the position field of the slider s to the value p. The previous value is discarded. If the slider s
is in the focus window then the slider thumb bar position is recalculated and the slider is
redrawn.

17.3.11. int SM_SetSliderScale(SliderType *s, int scale)

Sets the slider’s scale field. If the parent window of s is the focus window then the slider is
redrawn with a recalculated thumbbar. Returns s->scale.

The TWS Window System Reference and Tutorial Release 4.0

126 Checkbox Groups

17.4. Example
The simplest use of a slider is as a value selector within a fixed range of values. The user moves
the slider thumbbar to the desired position and the slider callback function sets the data value
accordingly. This type of operation is often combined with a label to display the data value in the
slider.
When using a slider this way, remember there’s a relationship between the size of the slider
channel and the values the slider can choose. In particular, if there are more data values
between min and max than pixels in the channel, the slider will skip over some values in the
range. The slider is therefore not suitable for precision selection within a large range of values.
For this example we’ll assume the slider is to select a value between 0 and 100, inclusive. We’ll
set the slider channel comfortably large so that every individual value can be selected, and we’ll
create a label over the slider to display the current slider value.

WindowType *w;
RectType rt;
SliderType *v;
LabelType *label;

rt.Xmin = rt.Ymin = 4;
rt.Xmax = rt.Xmin + 50;
rt.Ymax = rt.Ymin + SM_GetSystemFontHeight() + 6;
label = SM_CreateLabel(w,
 &rt,
 ““,
 NULL,
 ALIGNLEFT,
 False,
 False,
 True,
 NULL);
rt.Ymin = rt.Ymax + 4;
rt.Ymax = rt.Ymin + 150; /* Leave plenty of room for 100 ‘items’ */
rt.Xmax = rt.Xmin + 10;
v = SM_CreateSlider(w,
 &rt,
 VERTICAL,
 100, /* ‘Minimum’ slider value */
 0, /* ‘Maximum’ slider value */
 1, /* ‘page’ size (pixels per item) */
 0, /* Initial item */
 (void *)label,/* User data */
 DoSlider); /* Callback function */

Notice that the slider ‘minimum’ value is larger than the ‘maximum’ value. The minimum and
maximum application values are related to the minimum and maximum pixel values in the slider
(the y values in the case of a vertical slider, or x values in the case of a horizontal slider). In
other words, the slider normally puts the minimum value at the top of a vertical slider, and values
increase going down. Most people are more comfortable with increasing values going up, so we
simply reverse the values. The slider can deal with it either way.
There is no ‘page’ of items corresponding to the slider display, so we set it to its minimum value
of 1. We also attach the label to the data field of the slider so we can access it from the slider
itself.
Next write the slider callback function:

int DoSlider(SliderType *slider)
{

LabelType *label;
char valstr[5];

label = (LabelType *)SM_GetSliderData(slider);
sprintf(valstr,”%d”,SM_GetSliderPosition(slider));
SM_SetLabelString(label, valstr);

The TWS Window System Reference and Tutorial Release 4.0

127 Checkbox Groups

return 1;
}

All it does is extract the label from the slider’s data field, create a string based on the slider’s
position value, and update the label. As the user slides the thumbbar up and down the value in
the label will change in real-time. In a real application you would probably also capture the slider
position value and store it in an application variable.

The TWS Window System Reference and Tutorial Release 4.0

128 Scrollbar

18. Scrollbar

The scrollbar is similar to the slider gadget. Besides the slider channel, however, the scrollbar
also has buttons at the ends of the channel. Pressing one of the buttons changes the scrollbar
position by one unit, whereas clicking inside the channel on either end of the thumbbar changes
the position by one page. A scrollbar can be either vertical or horizontal.
Like the slider, the size of the thumbbar relative to the size of the scrollbar channel is
automatically adjusted to show the ratio of the scrollbar’s range to the range within a ‘page.’
The user controls a scrollbar by either clicking the left mouse button on either end of the
thumbbar, by dragging the thumbbar control in its channel, or by clicking one of the buttons. If
all the slider’s range is in the page then the thumbbar is the same size as the channel and no
adjustment is possible.
Clicking on one of the scrollbar unit buttons changes the position value by one unit either up or
down. If the position is already at the min or max position then the position value is unchanged.
If the position value doesn’t change then the scrollbar’s callback function is not called.

18.1. Data Types

typedef struct _sb {
 GadgetType *gadget;
 void *data;
 int type;
 SliderType *slider;
 ButtonType *upbutton;
 ButtonType *downbutton;
} ScrollbarType;

The Scrollbar takes advantage of the previously defined slider and button gadget types for most
of its functionality. The type field identifies the scrollbar as horizontal or vertical, and the data
field contains application data.
The application can’t directly manage the scrollbar’s slider or buttons; the scrollbar does that
internally.

18.2. Scrollbar Callback Function
The callback function supplied when the scrollbar is created behaves just about the same as the
slider callback function. In fact, the Scrollbar callback function is an int function whose argument
is a pointer to a slider rather than a scrollbar. There is an additional possible state value that
might be returned if the slider is part of a scrollbar: The SLIDERDONESTATE (value 0) is returned
if the user clicked on one of the slider buttons. This state is never returned by sliders.

18.3. Interface Functions smscroll.h

18.3.1. ScrollbarType *SM_CreateScrollbar(WindowType *w, RectType *r, int type,
int min, int max, int size, int init, void *data, int (*f)())

Creates and initializes a new Scrollbar and returns a pointer to it.

minThe value for the scrollbar’s position field when the scrollbar’s slider thumbbar is
at its leftmost or topmost position.

The TWS Window System Reference and Tutorial Release 4.0

129 Scrollbar

max...........The value for the scrollbar’s position field when the scrollbar’s slider thumbbar is
at its rightmost or bottom position. The actual value for max can be either
greater or lesser than min.

type...........Orientation for the scrollbar, either HORIZONTAL or VERTICAL (defined in
smslider.h);

sizeNumber of application data items per ‘page’. This value is used to adjust the
slider thumbbar size. For example, if the scrollbar is used to control a window
that contains some text, the size field would be set to the number of lines that fit
in the text display. This would enable the slider portion of the scrollbar to drag
the text so that the last text line was at the bottom of the ‘page’. size must be at
least 1;

r................The rectangle enclosing the scrollbar. The slider and buttons are set inside this
rectangle;

wWindow the scrollbar is attached to;
f................The scrollbar’s callback function. The function is called whenever the scrollbar’s

position value changes, either through the slider or one of the buttons. Clicking
on the scrollbar does not call the function if the position value doesn’t change.

18.3.2. void *SM_GetScrollbarData(ScrollbarType *sb)

Returns the application data field for the scrollbar.

18.3.3. int SM_GetScrollbarMax(ScrollbarType *sb)

Returns the max value the scrollbar can have.

18.3.4. int SM_GetScrollbarMin(ScrollbarType *sb)

Returns the min value the scrollbar can have.

18.3.5. int SM_GetScrollbarPosition(ScrollbarType *sb)

Returns the current scrollbar value.

18.3.6. int SM_GetScrollbarScale(ScrollbarType *sb)

Returns the page size, called the scale value internally, for the scrollbar sb. This is the number of
data items that constitute a page “jump” when the user clicks above or below the scrollbar
thumbbar. It has the same meaning as the corresponding slider field.

18.3.7. void SM_SetScrollbarChannel(ScrollbarType *sb, RectType *r)

Changes the size of the scrollbar based on the rectangle r. The slider channel, thumbbar, and
buttons are resized accordingly.

18.3.8. void SM_SetScrollbarData(ScrollbarType *sb, void *data)

Sets the application data field for the scrollbar. The existing data value, if any, is discarded.

18.3.9. void SM_SetScrollbarMinMax(ScrollbarType *sb, int min, int max)

Sets the scrollbar’s min and max fields. Automatically adjusts the thumbbar size if necessary to
reflect the new range. Note that the position field is not affected.

18.3.10. void SM_SetScrollbarPosition(ScrollbarType *sb, int pos)

Sets the scrollbar’s current value. The scrollbar’s slider thumbbar is moved accordingly. pos
should be in the range of the scrollbar, between min and max.

The TWS Window System Reference and Tutorial Release 4.0

130 Scrollbar

18.3.11. SM_SetScrollbarProc(ScrollbarType *sb, int (*f)(SliderType *))

Sets the application callback function for the scrollbar sb. The function f is an int function whose
argument is a pointer to a SliderType, which will be the slider component of the scrollbar.

18.3.12. void SM_SetScrollbarScale(ScrollbarType *sb, int scale)

Changes the ‘page’ size for the scrollbar. Must be greater than 0. Automatically adjusts the scroll-
bar’s slider’s thumbbar size as necessary.

The TWS Window System Reference and Tutorial Release 4.0

131 Stringlist

19. Stringlist

A stringlist displays a list of strings supplied by the application and allows the user to select one.
A string is selected by positioning the cursor over it and clicking the left mouse button. If another
string is already selected, it is unselected in favor of the new string.
If the list of strings doesn’t fit within the stringlist bounds, the list can optionally be made
scrollable. Scrollable single-column stringlists have a vertical slider to the right of the list.
Multiple-column stringlists have a vertical slider to the right and a horizontal slider below the list.
Moving the slider positions changes the portion of the stringlist displayed, but doesn’t change the
selection. If the stringlist is the focus gadget it also responds to keyboard input as described
below.
The currently installed system font and font color is used for the string display. If the list is
scrollable or has multiple columns, the attached sliders are drawn inside the stringlist border.

19.1. Data Types

typedef struct _sl {
 GadgetType *gadget; /* 'Superclass' gadget */
 int nstart; /* first string to display */
 int ndisplay; /* Number of strings to display */
 int nselected; /* Index of selected string */
 int nitems; /* Total number of list items */
 char **list; /* String list */
 int destroyflag; /* If true gadget can free stringlist*/
 int scrollflag; /* If true gadget can free stringlist*/
 int allowmulti; /* If true then allow multiple selection */
 int ncolumns; /* Number of columns in list */
 char **cols[10]; /* Pointers to column heads */
 int firstcol; /* Leftmost column index */
 int columnsep; /* Pixel separation between cols */
 int colfit; /* Number of displayable columns */
 SliderType *hscrollbar; /* Stringlist scroll, if requested */
 SliderType *vscrollbar; /* Stringlist scroll, if requested */
 void *data; /* User data pointer */
} StringlistType;

Field Description
nstart The first string in the list to display in the stringlist rectangle, always displayed

at the top. The application supplies the initial value for this when the stringlist is
created. This is an index into the list, with 0 the first string. If the list is
scrollable, the user will be able to scroll back to the beginning of the list
regardless of the initial value. This value is updated as the user scrolls the list.

ndisplay Number of strings that fit in the boundary rectangle. This value is calculated
when the stringlist is created.

nselected The index of the string currently selected. When the stringlist is first created,
this value is -1, meaning none of the strings are selected.

The TWS Window System Reference and Tutorial Release 4.0

132 Stringlist

nitems Number of strings in the list. The application supplies this value when the
stringlist is created. The stringlist gadget always assumes this value is correct,
so if there are actually fewer strings than this the stringlist will display garbage.
If there are more strings then they won’t be displayed.

list The list of strings. The stringlist does not copy the list, but simply copies the
pointer supplied by the application. Thus the list must be static data relative to
the lifetime of the stringlist gadget. Changes in the list will be reflected in the
stringlist gadget display (but not until the next time the gadget is redrawn).

destroyflag Supplied by the application when the stringlist is created, if True then TWS will
free the list when the stringlist gadget is destroyed. If False then the stringlist
destructor will ignore the list and it’ll be up to the application to free it, if
necessary.

scrollflag If True then a vertical slider will be attached to the stringlist. If the list is longer
than the space allowed in the boundary rectangle, the user will be able to scroll
through the list. If the entire list fits in the boundary then the slider is drawn
anyway, but does nothing.

allowmulti If True, the stringlist will allow multiple strings to be selected. If false, the
stringlist can return only a single string.

ncolumns The number of columns to display the list in. Supplied by the application. The
gadget will divide the list as necessary (this does not affect the data in the list
itself). If ncolumns is greater than 1 the stringlist adds a horizontal scrollbar at
the bottom of the stringlist rectangle. If all the columns will not fit in the
stringlist boundary then the user will be able to scroll the columns across. If all
the columns fit then the horizontal scrollbar will still be drawn but does nothing.

cols Pointers to beginning of columns. Maintained internally.
firstcol Leftmost column in the stringlist boundary rectangle. Maintained internally.

columnsep Number of pixels separating columns. Arbitrarily set to 10 pixels.
colfit Number of columns that fit in the boundary rectangle. Only calculated if

ncolumns is greater than 1. Maintained internally.
hscrollbar
 vscrollbar

Stringlist sliders. Maintained internally.

data Application data.

19.2. Stringlist Callback Function
The stringlist user function is called whenever a string from the list is selected. It is an int
function whose argument is a pointer to a StringlistType. The function is called after the string
selected by the user has been recorded and highlighted by the system.

19.3. Keyboard Interface
If a stringlist is the focus gadget, it responds to keyboard input as well as mouse input. The
stringlist responds to the following keys:

Key Action
Up / Down arrow Move the string selection up or down by one. If the selection is already at

the top or bottom of the list, nothing happens. The list scrolls as
necessary and, if sliders are attached to the list, the slider positions are
updated as well.

The TWS Window System Reference and Tutorial Release 4.0

133 Stringlist

PgUp / PgDn Jump the selected string up or down by a single “page.” Stops at the top
and bottom of the list. If the list has sliders attached, they are updated as
necessary.

Left / Right arrow For multiple-column lists, jumps the selected string over by one column.
No effect for single-column lists.

Home / End Positions the selection at the first or last item of the list, as appropriate.
Scrolls the list if necessary and adjusts the slider(s) if appropriate.

A stringlist focus gadget can always be scrolled with the keyboard interface, though not using
mouse input unless the stringlist was originally created as a scrollable stringlist. When a key is
pressed in the focus stringlist, if the selected string isn’t visible, the list is first scrolled to bring
the selected string into the list box.
After each recognized keystroke, the stringlist’s callback function is called.

19.4. Selecting Multiple Strings
If the allowmulti field is set then the stringlist gadget will keep track of more than one selected
string. Whether or not a stringlist gadget will allow multiple selections is determined when the
stringlist is created.
Multiple selection introduces subtle changes in the stringlist’s operation. In a single-selection
stringlist, the highlighted string is equivalent to the selected string. Moving the highlight, either
through mouse or keyboard control, also moves the selection. For multiple selection, the
highlighted string is not necessarily one of the selected strings.
The highlighted string for a multiple selection stringlist is represented by an outline instead of a
reverse-video box. Selected strings are represented in reverse video. Also, the following mouse
and keyboard actions are added or modified:

Key Single-selection action Multiple-selection action
Left mouse button Set the selection and

the highlight
Set the selection and the highlight. Any
other existing selections are cleared.

Shift + Left mouse button None Extends the selections from the previous
highlight position to the current position.
Does not affect any existing selections.

Ctrl + Left mouse button None Adds or deletes the string at the cursor
position to the selection list. If the string
is already on the list, it is removed,
otherwise it is added.

Space None Same as Left mouse button.

Shift + Space None Same as Shift + Left mouse button.
Ctrl + Space None Same as Ctrl + Left mouse button.

For multiple selection stringlists, the functions SM_GetStringlistSelection and
SM_GetStringlistSelectString return the index or string value for the highlighted string, not
one of the selected strings. To retrieve a list of indices for the selected strings, use
SM_GetStringlistSelectionList. This function returns an array of integer indices into the the
stringlist string array. The list is sorted in ascending order. The function
SM_GetStringlistSelectionCount returns the number of selected strings. The value returned
is accurate for either single or multiple selection stringlists.

StringlistType *slist;
char **list;
RectType box;

The TWS Window System Reference and Tutorial Release 4.0

134 Stringlist

WindowType *w;
int i, count, *selections;
/*
**...
** Set up list for multiple selections
*/
slist = SM_CreateStringlist(w, &box, list, cnt, 0, 1, MyCallback, 0, 0, True, NULL);
/*
** ...
** Done with stringlist, get what the user selected
*/
count = SM_GetStringlistSelectionCount(slist);
selections = SM_GetStringlistSelectionList(slist);
for (i = 0; i < count; i++) {
 /*
 ** Process the strings
 */
 DoSomethingWith(list[selections[i]]);
}

19.5. Interface Functions smstrlst.h

19.5.1. StringlistType *SM_CreateStringlist(WindowType *w, RectType *r, char
**list, int nitems, int nstart, int ncols, int (*f)(), int destroyflag, int scrollflag, int
multiflag, void *data)

Create a new stringlist gadget attached to window w and return a pointer to it.

wparent window for the stringlist;
rthe bounding rectangle for the stringlist in window-relative coordinates;
list.............the static array of strings to be displayed;
nitemsnumber of strings in list;
nstartindex (starting at 0) of the string from list to be displayed first in the box;
ncolsnumber of columns to display the list in. If greater than 1 SM_CreateStringlist

calculates the number of strings for each column and the number of columns
that will fit in the boundary rectangle r (also taking into account the slider, if
any). A horizontal slider is added to the stringlist for scrolling left and right
between columns.

f................application function to be called whenever the stringlist is selected. The function
gets a single argument, which will be a pointer to the stringlist.

destroyflag .If non-zero, the stringlist destructor function will free the strings in the stringlist,
then the stringlist itself. This assumes that both the individual strings and the list
itself were dynamically allocated. If 0, the stringlist destructor ignores list.

scrollflagIf non-zero then the stringlist will have a vertical slider attached to it, which is
used to scroll through the list. The slider is drawn to the inside of the stringlist
boundary r which reduces the space available for displaying strings.

multiflagIf True then the stringlist will allow multiple selections, otherwise only one string
at a time can be selected.

dataApplication data.

19.5.2. int SM_DestroyStringlist(StringlistType *s)

Free memory allocated to the stringlist argument and remove it from its parent window’s control
list. Does not free memory used by array of strings.

19.5.3. int SM_GetStringlistNDisplay(StringlistType *s)

Returns the number of strings that fit in the stringlist rectangle. This value is calculated when the
stringlist is created and is the same as the ndisplay field of the stringlist structure.

The TWS Window System Reference and Tutorial Release 4.0

135 Stringlist

19.5.4. int SM_GetStringlistSelection(StringlistType *s)

Returns the index of the item selected in stringlist s. This value is the nselected field of the
stringlist structure.

19.5.5. int SM_GetStringlistSelectionCount(StringlistType *s)

Returns the number of strings selected in the stringlist s. Works for both single and multiple
selection lists. Returns 0 if no strings are selected.

19.5.6. int *SM_GetStringlistSelectionList(StringlistType *s)

Returns an integer array containing the indices of the strings selected from stringlist s. Valid only
for stringlists with the allowmulti field set. The returned array is internally malloc-ed and is of size
SM_GetStringlistSelectionCount. The application should free this array when it’s no longer
needed.

19.5.7. char *SM_GetStringlistSelectString(StringlistType *s)

Returns a pointer to the string that is currently selected. This is a pointer to the string in the
original list (which is in the application). Modifying this string will modify the stringlist display
when it’s next drawn.

19.5.8. int SM_RedrawStringlist(StringlistType *s)

Unconditionally redraw the stringlist s. Does not check that the stringlist’s parent window is the
focus window.

19.5.9. void SM_SetStringlistList(StringlistType *s, char **list, int nitems)

Gives an existing stringlist a new list of strings to display. Recalculates columns and sliders as
necessary and, if the stringlist is in the focus window, redraws the stringlist. The selection is
cleared (no string selected).

19.5.10. int SM_SetStringlistSelection(StringlistType *s, int n)

Sets the selected string in the stringlist s to the nth element in the string array. If n is out of
range then the existing selection is unchanged and False is returned. On success True is re-
turned. The selected-string highlighting is modified to reflect the new selected string if the s’
parent window is the focus window.

The TWS Window System Reference and Tutorial Release 4.0

136 Editstring

20. Editstring

The Editstring is a one-line, bordered gadget containing a text string which can be edited. When
active, it traps keystroke events, including the Enterkey, and left mouse button events. Printable
characters are added to the string at the insertion point (the beginning of the string initially). The
left and right arrow, end, and home keys, move the edit cursor thus changing the insertion point
for input characters. Clicking the mouse cursor inside the editstring box while the editstring is
active moves the edit cursor to the mouse cursor position. The delete and backspace keys work
as expected.
If the string is longer than the boundary rectangle, the string scrolls left and right in response to
the arrow keys, backspace key, and text entry. The home and end keys also scroll the string as
necessary to display the beginning and end of the string.
Pressing the Enter key while an editstring is active deactivates it. When the editstring is inactive it
only responds to the left mouse button, which activates the editstring if the cursor is inside the
editstring boundary. Within a focus window only one editstring should be active at any time; if
more than one is, the first one created will process all keystrokes.
Most gadgets trap11 the input events they’re interested in. However, the editstring does not trap
the Enter key event. This allows the event manager to propagate the Enter key to other gadgets
that might be interested in it. The main reason for this is that the Enter key triggers the default
button, which is often used to close application windows.

20.1. Data Types

typedef struct _etext {
 GadgetType *gadget; /* Superclass gadget */
 char *string; /* String to be edited */
 int maxlength; /* Allocated string space */
 int cursorpos; /* Index in string where cursor is */
 int headpos; /* Index where string is drawn */
 int boldflg; /* TRUE if string is bolded */
 int italflg; /* TRUE if string is italicized */
 int insert; /* Insert/overwrite mode flag */
 int xalign; /* Horizontal string alignment */
 int start_highlight; /* First index of highlight block */
 int end_highlight; /* Last index of highlight block */
 int active; /* True if this string is active */
 void *data; /* User data */
 int (*action)(); /* User callback function */
 int group; /* Editstring group */

} EditstringType;

Editstring data field Description
string The initial string for editing passed in when the editstring is created. The

editstring makes a copy of the string.

11Trapping an event simply means that, once a gadget has actively responded to an event (the event was one the

gadget was interested in, and occurred within the gadget bounds, and the gadget performed some action in response to
the event), the gadget shell function tells the gadget manager to stop checking any other gadgets. This is an efficiency
feature – if you click the mouse on a button, you can’t have also clicked it on a checkbox. Why waste time testing it?

There are time you want events to ‘propagate’ through the system, however. This is one of those times.

The TWS Window System Reference and Tutorial Release 4.0

137 Editstring

maxlength Provided by the application when the editstring is created. This is the
maximum number of characters the string can hold. If 0 then the length of
the initial string is used as maxlength.

cursorpos Index in the string where the next input character will be inserted.
Managed internally.

headpos String index for the beginning of the display. Managed internally.
backcolor Background color for the stringlist when active. Set to White internally.

textcolor Color of the string, set to Black internally.
boldflg If True the string is bolded. Not all graphics kernel systems support text

attributes. Defaults to False.
italflg If True the string is drawn using an italic facing. Not all graphics kernel

system support text attributes. Defaults to False.

insert Insert/overwrite flag. Only insert mode is currently supported.
xalign Text alignment within the editstring boundary. Defaults to ALIGNLEFT.

Other alignments are not currently supported.

start_highlight
end_highlight

Not currently used.

active True if the editstring is active. Defaults to True when the editstring is
created.

data User data.

action Callback function.
group Identifier for a collection of editstrings, which allows only one from the

group to be active. Defaults to 0 (no grouping).

20.2. Editstring Callback Procedure
The editstring callback function is an int function with two arguments: a pointer to an
EditstringType and a pointer to an EventType. The function is called for every event processed by
the editstring, except for the event that activates it, and is called before the event is processed
by the editstring. This gives the callback function the opportunity to modify the event before the
editstring gets a look at it. Some simple examples are converting characters to uppercase, adding
a keyclick, or filtering illegal characters for validated data input.
The editstring callback function should return 0 if the editstring should continue to process the
input, or non-zero if not.

20.3. Editing a string
When the Editstring is created the application specifies either the initial string to be edited, a
maximum length of any string in the gadget, or both. If no maximum length is specified (set the
maxstr argument to 0), then the gadget will limit all strings to the length of the initial string. If
maxstr is greater than 0, its value sets the maximum number of characters that the string can
hold.
In either case, the gadget will not allow more characters than maxstr.

20.4. Interface Functions smeditst.h

20.4.1. EditstringType *SM_CreateEditstring(WindowType *w, RectType *box, char
*str, int maxstr, void *data, int (*f)())

Create a new editstring gadget and return a pointer to it.

The TWS Window System Reference and Tutorial Release 4.0

138 Editstring

wParent window for the editstring;
box............Boundary rectangle for the editstring in window coordinates. The string is clipped

within this box.
strString to be edited. Must be static data;
maxstrMaximum length of the string that can be edited. Must be >= the length of the

initial string, if any! If 0 then the length of str is used as the maximum length.
dataUser data.
f................Callback function.

20.4.2. int SM_DestroyEditstring(EditstringType *e)

Free the editstring and all resources allocated to it. If the editstring’s parent window has the
focus then it’s redrawn.

20.4.3. int SM_GetEditstringActive(EditstringType *e)

Returns the active field for the editstring, either True or False.

20.4.4. int SM_GetEditstringCursorpos(EditstringType *e)

Returns the edit cursor position for the string in the editstring. The cursor position is the index
into the character string being edited, with 0 as the first character.

20.4.5. int SM_GetEditstringGroup(EditstringType *e)

Returns the ID of the group the editstring belongs to. If 0 then the editstring doesn’t belong to a
group. Within a group only one editstring is allowed to be active -- activating one editstring in a
group automatically deactivates any others in the same group.

20.4.6. char *SM_GetEditstringString(EditstringType *e) (macro)

Returns the string being edited. The return pointer is string in the Editstring e itself. If the string
is modified by the application the Editstring gadget won’t know it, and Chaos will result.

20.4.7. int SM_SetEditstringActive(EditstringType *e, int a)

Makes the editstring active if a is True, or inactive if a is False. If the editstring’s parent window
has the focus then it is redrawn to indicate the change in state. Returns a.

20.4.8. int SM_SetEditstringCursorpos(EditstringType *e, int pos)

Sets the edit cursor position within the editstring to the string character at index pos within the
string, where the first character is 0. The edit cursor is placed in front of this character. If pos is
greater than the number of characters in the string then the position is set to the end of the
string. Returns the actual cursorpos; either pos or the position at the end of the string.

20.4.9. void SM_SetEditstringGroup(EditstringType *e, int group)

Sets the editstring group to group, which should be a non-zero integer identifier. All editstrings to
be in the same group should be set to the same value. To remove an editstring from a group
without deleting the editstring itself, set the group value to 0.
The function doesn’t check that only one of the editstrings in the group is active so the
application must ensure this.

The TWS Window System Reference and Tutorial Release 4.0

139 Editstring

20.4.10. int SM_SetEditstringString(EditstringType *e, char *s)

Changes the string pointed to by the editstring to s. The previous string is discarded. s must be a
pointer to static data. The cursor position is set to 0 and, if the editstring’s parent window has
the focus, the editstring is redrawn to reflect the change. Returns the length of s.

The TWS Window System Reference and Tutorial Release 4.0

140 Text

21. Textbox

The Textbox is a simple ASCII text display gadget that provides ease and simplicity rather than
great flexibility. Given the name of a disk file this gadget opens the file, reads the text in, builds
slider bars for scrolling the text if necessary and displays the whole thing. The amount of text
that can be displayed is limited to about 32k. An attempt to display a larger file will fail.
Text lines can either clip at the Textbox boundary, or be wrapped.

21.1. Data Types

typedef struct _textboxtype
{
 GadgetType *gadget; /* 'Superclass' gadget */
 FontType *font; /* Display font */
 char *filename; /* Filename */
 TextlistType *list; /* String list */
 int nlines; /* Number of text lines that fit */
 int tlines; /* Total number of lines */
 int border; /* Box border flag */
 int topline; /* Points at top line in box */
 int bottomline; /* Points at last line in box */
 int wordwrap; /* If TRUE then wrap lines */
 SliderType *vslider; /* Slider, if necessary */
} TextboxType;

Just about all the fields of a Textbox gadget are calculated, except for the boundary rectangle
and font.

21.2. Textbox Callback Procedure
Although a user function is a parameter when the Textbox is created, it is not currently used.
There isn’t any way for the user to “select” a Textbox so no way for the system to call a callback
function.

The TWS Window System Reference and Tutorial Release 4.0

141 Text

21.3. Interface Functions smtext.h

21.3.1. int SM_BuildTextList(char *fname, TextlistType **tl)

Given a file name fname and a pointer to a pointer to a TextlistType tl, opens the file, allocates
the textlist, and builds the textlist using the text from the file. This is the same function called by
the SM_CreateTextbox function.
Returns -1 if unable to open the file, otherwise returns the number of lines of text read.

21.3.2. TextboxType *SM_CreateTextbox(WindowType *w, RectType *r, char
*filename, FontType *font, int borderflg, int wrapflag, int (*func)())

Creates a new Textbox attached to window w by reading the contents of the file filename and
returns a pointer to it.

wWindow the Textbox will be attached to;
r................Bounding rectangle for the Textbox in window-relative coordinates;
filename.....Name, including path as necessary, of file to read (no wildcards allowed);
fontFont for displaying the text;
borderflgTrue if the Textbox boundary should be bordered, False otherwise;
wrapflagIf True then text will be wrapped at the boundary rectangle borders. Otherwise

text ix clipped at the borders.
func...........Application callback function, currently unused. Set to NULL for future

compatibility.

21.3.3. int SM_DestroyTextbox(TextboxType *tb)

Frees a Textbox and all memory associated with it. Does not affect the text file.

21.3.4. int SM_SetTextboxRect(TextboxType *tb, RectType *r)

Sets the boundary rectangle for Textbox tb to the rectangle r, specified in window-relative
coordinates (relative to the parent window of tb). If tb’s parent window is the focus window then
the Textbox is recalculated and redrawn to reflect the new boundary rectangle. If necessary, a
slider may be added to (or removed from) the Textbox.

21.3.5. int SM_TextboxLineDown(TextboxType *tb)

Causes the text in tb to scroll down one line, unless the bottom line of the text is already
displayed.

21.3.6. int SM_TextboxLineUp(TextboxType *tb)

Causes the text in tb to scroll up one line, unless the top line of the text is already displayed.

21.3.7. int SM_TextboxPageDown(TextboxType *tb)

Causes the text in tb to scroll down one page (number of lines that fits in the Textbox boundary),
unless the bottom of the text is already displayed.

21.3.8. int SM_TextboxPageUp(TextboxType *tb)

Causes the text in tb to scroll up one page (number of lines that fits in the Textbox boundary),
unless the top of the text is already displayed.

The TWS Window System Reference and Tutorial Release 4.0

142 Rotatelist

22. Rotatelist

The Rotatelist displays a sequence of strings, one at a time. The display includes a label area
which shows the currently selected string, and two buttons for going to the next or previous
string on the list. An attempt to go to the next string when the last string is displayed wraps
around to the first string. Likewise, trying to go back from the first string wraps to the last string
-- that is, the list is circular, hence the name Rotatelist.
The list of strings displayed by the Rotatelist is provided by the application; the gadget does not
make a copy of it. It must therefore be static data relative to the gadget’s lifetime. That last
string as far as the gadget is concerned is the string preceding the first NULL string in the list.
The strings are displayed using the system font defined at the time the list is drawn.

22.1. Data Types

typedef struct {
 GadgetType *gadget; /* Superclass gadget */
 char **list; /* List of strings to display */
 int nlist; /* Number of items in the list */
 int current; /* Current string */
 int align; /* Left, right, center alignment */
 ButtonType *upbutton; /* Scroll up */
 ButtonType *downbutton; /* Scroll down */
 LabelType *label; /* Display of selected string */
 int (*f)(); /* Application function */
 void *data; /* Application data */
} RotatelistType;

The list is the list of strings supplied by the application. These must be static since the Rotatelist
doesn’t copy them. The list is terminated by a NULL pointer. The number of items on the list nlist
is calculated when the Rotatelist is created. current is the index for the string displayed in the
gadget. align controls how the displayed string is positioned in the display and is one of the text
alignment constants defined in smtypes.h: ALIGNLEFT, ALIGNRIGHT, or ALIGNCENTER.
The upbutton, downbutton, and label are TWS interface gadgets that are explicitly controlled by
the Rotatelist gadget -- the application cannot “see” these gadgets. f is the gadget callback
function, which must be an int function whose argument is a pointer to a Rotatelist. Finally, data
is the application data field.

22.2. Rotatelist Callback Procedure
The Rotatelist callback function is called whenever the list selection is changed by pressing one of
the buttons. It is an int function whose argument is a pointer to a Rotatelist. It’s called after the
selection change and after the buttons have been redrawn. The return value from the callback
function is returned to the application event processor.
The callback procedure should not change the list selection value.

22.3. Interface functions smmulti.h

22.3.1. RotatelistType *SM_CreateRotatelist(WindowType *w, RectType *r, char
**list, int align, int (*f)(), void *data)

Allocates and initializes a new Rotatelist gadget attached to window w and returns a pointer to it.

The TWS Window System Reference and Tutorial Release 4.0

143 Rotatelist

wWindow to attach the Rotatelist to. If w is NULL then the gadget is allocated and
initialized but not attached to any windows.

r..........A rectangle for the outer boundary of the list. The selected string display label and
control buttons are drawn inside this rectangle and relative to it -- the buttons are
each about half the height of the rectangle, and the label is drawn just inside the
border. Specified in window content coordinates.

list.......The list is the array of strings the Rotatelist uses. It must be a contiguous array of
null-terminated strings and must be static data relative to the Rotatelist. The array
itself must end with a NULL pointer element.

alignSpecifies the alignment of the selected string within the display label. Constants
provided in smwindow.h are ALIGNLEFT, ALIGNCENTER, or ALIGNRIGHT.

f..........Application function called whenever the selected string changes. May be NULL.
dataApplication-specific data. May be NULL

Example:

#include <smwindow.h>
#include <smmulti.h>
#include <stdio.h>
:
:
static char *strings[] = {“Black”,”Blue”,”Green”,”Yellow”,”Red”,(char *)NULL};
RectType r;
WindowType *w;
RotatelistType *rl;
:
:
r.Xmin = r.Ymin = 50;
r.Xmax = r.Xmin + 150;
r.Ymax = r.Ymin + 2*SM_GetSystemFontHeight();
rl = SM_CreateRotatelist(w, &r, strings, ALIGNLEFT, NULL, NULL);

22.3.2. int SM_SetRotatelistList(RotatelistType *rl, char **list)

Sets the list of strings for the Rotatelist rl to list. list must be static data in the application
program relative to the lifetime of the gadget. The selected string is set to the first string in the
new list and, if the Rotatelist’s parent window is the focus window, the Rotatelist gadget rl is
redrawn. Returns 0 (the function cannot fail).

22.3.3. char *SM_GetRotatelistString(RotatelistType *rl)

Returns a pointer to the string currently selected in the Rotatelist rl. If the list in rl is empty then
NULL is returned.

22.3.4. int SM_GetRotatelistSelected(RotatelistType *rl)

Returns the index of the string currently selected in the Rotatelist rl. This function cannot fail
because the default index is 0 even for an empty list. The string may be NULL or undefined,
however, depending on the values in the list of strings attached to the Rotatelist.

22.3.5. void *SM_GetRotatelistData(RotatelistType *rl)

Returns the data field of the rotatelist, generally a pointer to application data.

22.3.6. void SM_SetRotatelistData(RotatelistType *rl, void *data)

Sets the data field of the rotatelist rl to data. If there is already a value in the data field, the
existing value is discarded.

The TWS Window System Reference and Tutorial Release 4.0

144 Rotatelist

22.3.7. int SM_SetRotatelistSelected(RotatelistType *rl, int n)

Sets the selected string in the rotate list to the one at index n, where 0 is the first string. If n is
greater than the number of strings in the list then the current selection is unchanged and a non-
zero value is returned; otherwise 0 is returned on success.
Setting the Rotatelist selection automatically calls the Rotatelist callback function after the new
selection is set.

The TWS Window System Reference Release 4.0

145 Pixmaps

23. Pixmaps

A pixmap is a rectangular region of pixels. Pixmaps are used to decorate and highlight, as
facings for buttons (as in the column of buttons on the left in the illustration) and labels, and as
part of icons.
A pixmap has no functionality associated with it, but otherwise is treated much as any other
gadget. In addition, pixmaps can be saved to disk and read back later. Since the pixmap is an
array of colors, the appearance of a pixmap depends on the hardware color system and the color
palette of the focus window at the time the pixmap is displayed.
Pixmaps are normally treated as static data (for example, as window icons or decorations for
dialog boxes -- the pixmaps at the bottom left and center right in the illustration above) but there
are also provisions for dynamically modifying a pixmap by directly setting its colors. However,
since pixmaps are severely restricted in size (more about this later), they’re not really suited for
general graphics purposes.

23.1. Data Types

typedef struct {
 GadgetType *gadget; /* Superclass gadget */
 int *pixmap; /* Array of color indices */
 void *image; /* Screen image */
 int redraw; /* If True then pixmap was modified */
 int border; /* If True draw border around pixmap*/
 int blocking; /* If True then don't save image */
 /* after every pixel change */
} PixmapType;

Notice that there are two types of pixmap “images” stored in the pixmap struct. One is a map of
the color indices from the color table that was active when the pixmap was created, and the
other is a screen image of the pixmap. These are not (necessarily) the same values. The screen
image is stored so the pixmap can be redrawn quickly. The color indices image is needed in case
the application modifies the pixmap while it’s inactive, or the pixmap is saved to disk.
The blocking flag is an optimization feature. Normally, to keep the screen image current, it is
saved after every modification to the pixmap. This can slow the application considerably if the
pixmap is being updated rapidly. Setting the blocking flag prevents the screen pixmap image

The TWS Window System Reference Release 4.0

146 Pixmaps

from being saved. Clearing the blocking flag automatically saves the pixmap image if the
pixmap’s parent window has the focus.

23.2. Pixmaps and memory usage
Pixmaps are expensive gadgets. Every pixmap requires two large data sets. One is the matrix of
color indices describing the pixmap image. This is the “real” pixmap as the artist designed it. This
representation is needed whenever the pixmap must be regenerated on the screen, such as
when the window is initially opened or when the pixmap has been obscured.
The other data set is a screen image of the pixmap -- that is, a matrix of pixel values. The
pixmap image provides very fast redrawing of the pixmap, such as whenever a window is moved.

23.3. Creating a Pixmap
A pixmap can’t be created “ready to wear” -- it has to be set up in two steps: first, the pixmap
gadget is created using the SM_CreatePixmap function. Given a window and a boundary
rectangle, SM_CreatePixmap allocates a new pixmap and attaches it to the window. The
content of the pixmap at this point is empty.
The next step is to add colors to the pixmap. The function SM_SetPixmapPixel is used to set
the individual pixels within a pixmap. SM_SetPixmapPixel is passed the pixmap, the X and Y
coordinates within the pixmap to be set, and a ColorType to set the pixmap to. Only the color
table index from the ColorType is used. If the pixmap’s parent window is the focus window, the
pixmap is updated on the screen as well.

PixmapType *pm;
RectType r;

r.Xmin = r.Ymin = 1; /* Create a 32x32 pixmap */
r.Xmax = r.Ymax = 32;
pm = SM_CreatePixmap(w, &r, False);
for (y = 0; y < 32; y++) {

for (x = 0; x < 32; x++) {
SM_SetPixmapPixel(pm, x, y, SM_GetSystemColor(5));

}
}

A special note about the ColorType * argument to the SM_SetPixmapPixel function: only the
index of the color passed is used (for LUT systems), and the index is assumed to be from the
system color table. If the application sends in window colors the pixmap may display with the
wrong colors.
The example above creates a pixmap and fills it with a solid color. More likely your application
will either draw in the pixmap or read it from disk.

23.4. Reading and Writing Pixmaps from Disk
The other way to create a pixmap is to read it from a disk file. The function SM_ReadPixmap is
passed a window and a file name, and it reads the pixmap file, creates a new pixmap, loads the
pixmap with the image from the file, and returns the new pixmap. The pixmap as returned by
SM_ReadPixmap has no parent window and its “position”12 is at (0,0). Once the application
has the pixmap, it must be mapped to a window.
A pixmap gadget created in this manner is freed normally when the window is closed.

PixmapType *pm;

pm = SM_ReadPixmap(“mypixmap.pxm”);
if (pm) {

12Yes, but relative to what? The answer is, nothing at all. An example of “coordinate-free” positioning -- a

position with no reference frame! The mapping will set the frame and thus establish the “real” position of the pixmap.

The TWS Window System Reference Release 4.0

147 Pixmaps

SM_AttachGadget(w, SM_GetGadgetSuperclass(pm));
SM_MovePixmap(pm, 10, 5);

}

The example above verifies that the pixmap was read successfully (SM_ReadPixmap returns
NULL on failure), then attaches it to a window using SM_AttachGadget. Finally, the gadget is
moved into position by SM_MovePixmap. If the window w is the focus window the user will
see the pixmap displayed twice; once when it’s attached, then again when it’s moved. We could
prevent this by moving it first (and probably would in a real application).
The colors in a pixmap file must be in the TWS 8-bit RGB format. If the pixmap was written using
the TWS function SM_WritePixmap then this is the case. The pixmap gadget itself contains
only the LUT indices for the colors in the pixmap. These are interpreted by the pixmap draw and
write functions as indices into the system color table. This policy has two effects: for one, the
actual RGB colors written to a pixmap file depend on the current color palette, which in turn
depends on the current active window, among other things. If a pixmap is written to disk while
some other window with a different graphics color palette is active, the pixmap may store colors
different from those intended.
On the plus side, using system colors allows pixmaps that don’t change when windows load their
own palettes, because the pixmaps can access reserved system colors. This is very desirable for
icons and other user interface uses.
Application developers can control the system color table outside the reserved system colors by
simply filling a window color table and making the window active. In this way both fixed system
colors and window colors can be applied to pixmaps.

23.5. Interface Functions smpixmap.h

23.5.1. void SM_ClearPixmap(PixmapType *pm, ColorType *c)

Sets all the pixels in a pixmap to the color c.

23.5.2. PixmapType *SM_CreatePixmap(WindowType *w, RectType *r, int
Borderflag)

Allocates and returns a pointer to a new pixmap whose dimensions are determined by the
rectangle r. The resulting pixmap is attached to window w and its contents are empty. If
borderflag is True then the pixmap will display with a raised bevel border; otherwise the pixmap
has no border.

23.5.3. PixmapType *SM_ReadPixmap(char *filename)

Allocate a new pixmap, read its contents from the file filename and return a pointer to the
pixmap. The pixmap is not displayed and is not attached to any window. Its upper-left corner is
at position (0,0). If filename doesn’t exist, can’t be opened or doesn’t contain a valid pixmap then
NULL is returned.

23.5.4. void SM_MovePixmap(PixmapType *pm, int dx, int dy)

Change the position of a pixmap by dx,dy pixels. Positive values move the pixmap down and to
the right, negative values up and to the left. If the pixmap is part of the focus window then it’s
redrawn immediately.

23.5.5. int SM_GetPixmapBlocking(PixmapType *pm);

Returns the blocking flag for the pixmap, either True or False.

The TWS Window System Reference Release 4.0

148 Pixmaps

23.5.6. void SM_SetPixmapBlocking(PixmapType *pm, int blocking);

Sets the pixmap blocking flag to blocking. If the value is False blocking is disabled, any other
value enables blocking. When blocking is enabled then setting pixels in the pixmap will not be
drawn on the screen.

23.5.7. void SM_SetPixmapPixel(PixmapType *pm, int x, int y, ColorType *c);

Set the value of the pixmap pixel x,y to the color c. The color is assumed to be from the system
color table. For LUT color systems the pixmap is only concerned with the index value of c.

23.5.8. int SM_DestroyPixmap(PixmapType *pm);

Free a pixmap and all resources associated with it. If the pixmap’s parent window has the focus
it’s redrawn immediately with the pixmap removed.

23.5.9. ColorType *SM_GetPixmapPixel(PixmapType *pm, int x, int y, ColorType *c);

Return the color value from the pixmap at position x,y. The color is stored in c and contains the
color index and RGB values taken from the system color table.

23.5.10. int SM_GetPixmapWidth(PixmapType *pm);

Returns the width of the pixmap in pixels.

23.5.11. int SM_GetPixmapDepth(PixmapType *pm);

Returns the depth of the pixmap in pixels.

23.5.12. int SM_WritePixmap(PixmapType *pm, char *fname);

Write the contents of the pixmap to the file named fname, which can contain drive and path
information but no wildcard characters. If the file exists its contents are replaced by the pixmap
data without warning.
The pixmap is written to the file in a device-independent way that includes the RGB values of the
original pixmap in TWS 8-bit format. This allows the most flexibility in mapping the pixmap to the
existing color resources when it’s read back in.
Returns 0 on success, any other value indicates failure.

23.5.13. void SM_CopyPixmap(PixmapType *dest, PixmapType *source);

Make a duplicate of the source pixmap in the dest pixmap. The destination pixmap must already
be created at least large enough to hold the entire contents of the source pixmap. If the
destination is smaller than the source then some source pixels will be lost, but this is not
considered an error.

The TWS Window System Reference Release 4.0

149 Pixmaps

The TWS Window System Reference Release 4.0

150 Pixmaps

24. Borders

Borders are beauty gadgets, designed to provide visual organization and decoration to TWS
applications. They have no functionality and cannot have the input focus. They serve roughly the
same purpose as the lines and rectangles that organize text and graphics in a printed document.
Since they are gadgets, however, the application doesn’t need to create a graphics state, and the
window manager takes care of positioning, sizing, and clipping them once they’re created.

24.1. Border Types and Styles
There are three border types. Each type of border can be one of five styles. Types and styles are
identified by constant values defined in smborder.h. The types are:

Type Value Description
twsBORDERHLINE 1 A horizontal line.
twsBORDERVLINE 2 A vertical line.

twsBORDERBOX 3 A rectangular box.

Each of the border types can be one of five styles. The styles are:

Style Value Description
twsBORDERFLAT 1 Simple solid color outline.

twsBORDERBEVEL 2 A rectangle with a ‘raised’ appearance. The leading edge is
drawn in white, the trailing edge in the border’s specified
color.

twsBORDERSCULPT 3 A rectangle with a ‘recessed’ appearance. The leading edge is
drawn in the border’s specified color, the trailing edge is
drawn in white.

The TWS Window System Reference Release 4.0

151 Pixmaps

twsBORDERRIDGE 4 The appearance of a raised ‘bead’ around the rectangle. This
style requires two lines; the leading line is drawn in white, the
trailing line in the border’s specified color. The total border
width is twice the specified width. This is identical to the
twsBORDERBEVEL style when applied to horizontal or vertical
lines.

twsBORDERLRIDGE 5 The appearance of a recessed ‘groove’ around the rectangle.
This style requires two lines; the leading line is drawn in the
border’s specified color, the trailing line in white. The total
border width is twice the specified width. This is identical to
the twsBORDERSCULPT style when applied to horizontal or
vertical lines.

The box and horizontal line border types can have an optional title or border label. When applied,
the label is drawn at the top of the box, and can be positioned in the center of the box or line, or
at the left or right edge. Constants that control this are defined in smborder.h:

Label Position Value Description
twsBORDERLEFT 1 Position the label about 10 pixels from the left edge of the

border, and along the top edge for boxes.
twsBORDERRIGHT 2 Position the label about 10 pixels from the right of the border,

and along the top edge for boxes.
twsBORDERCENTER 3 Center the label on the border, along the top edge for boxes.

Vertical borders will not display labels, but it is not an error to provide one.

24.2. Interface functions [smborder.h]

24.2.1. BorderType *SM_CreateBorder(WindowType *w, RectType *r, char *label, int
position, int type, int style, int thick, ColorType *color)

Create a new border gadget and return a pointer to it. Values are:

wParent window for the border gadget;
r................Rectangle in window-relative coordinates describing the outside boundary of the

border. For multi-line thick borders, the extra lines are drawn inside this
rectangle

labelBorder label. Ignored if the border is a vertical line;
position......Constant defining the position for the label, defined in smborder.h. Ignored if the

label is a vertical line;
type...........Type of border -- horizontal or vertical line, or box. Constants defined in

smborder.h;
styleStyle of border -- sculpted, beveled, flat, beaded, or grooved, according to

constants defined in smborder.h;
thickThickness of the border. Must be at least 1. Additional lines of thickness are

drawn inside the border. The xxxRIDGE styles require two lines per thickness, so
their actual thickness is 2*thick.

color..........Color of the border. For 3D border styles, the highlighted edge is always in
white, the shadowed edge is in color. May be any system or window color.

It’s important that the rectangle r be large enough to enclose all parts of a horizontal or vertical
line border. These are not single lines. For lines, the border is not drawn and will not cause

The TWS Window System Reference Release 4.0

152 Pixmaps

underlying window elements to be obscured — only the border lines themselves are drawn.
However, the lines are clipped within the specified rectangle.

24.2.2. int SM_DestroyBorder(BorderType *border)

Frees the border border and removes it from the window.

ColorType *SM_GetBorderColor(BorderType *border) [macro]

Returns the border’s color. This is a pointer to the border’s color field and should normally be
treated as read-only.

24.2.3. char *SM_GetBorderLabel(BorderType *border) [macro]

Returns the label for the border. This is a pointer to the label in the border structure itself, not a
copy, and should be treated as read-only.

int SM_GetBorderPosition(BorderType *border) [macro]

Returns the label position constant from the border. Values are:

Label Position Value Description
twsBORDERLEFT 1 Position the label about 10 pixels from the left edge of the

border, and along the top edge for boxes.

twsBORDERRIGHT 2 Position the label about 10 pixels from the right of the border,
and along the top edge for boxes.

twsBORDERCENTER 3 Center the label on the border, along the top edge for boxes.

int SM_GetBorderStyle(BorderType *border) [macro]

Returns the border style constant from the border. Values are:

Style Value Description
twsBORDERFLAT 1 Simple solid color outline.

twsBORDERBEVEL 2 A rectangle with a ‘raised’ appearance. The leading edge is
drawn in white, the trailing edge in the border’s specified
color.

twsBORDERSCULPT 3 A rectangle with a ‘recessed’ appearance. The leading edge is
drawn in the border’s specified color, the trailing edge is
drawn in white.

twsBORDERRIDGE 4 The appearance of a raised ‘bead’ around the rectangle. This
style requires two lines; the leading line is drawn in white, the
trailing line in the border’s specified color. The total border
width is twice the specified width. This is identical to the
twsBORDERBEVEL style when applied to horizontal or vertical
lines.

twsBORDERLRIDGE 5 The appearance of a recessed ‘groove’ around the rectangle.
This style requires two lines; the leading line is drawn in the
border’s specified color, the trailing line in white. The total
border width is twice the specified width. This is identical to
the twsBORDERSCULPT style when applied to horizontal or
vertical lines.

The TWS Window System Reference Release 4.0

153 Pixmaps

int SM_GetBorderThick(BorderType *border) [macro]

Returns the border thickness, in pixels. For the ridged border styles, the actual number of pixels
used to draw the border is 2* the border thickness.

int SM_GetBorderType(BorderType *border) [macro]

Returns the border type constant, which identifies the border as a line or box. Constant values
are:

Type Value Description
twsBORDERHLINE 1 A horizontal line.

twsBORDERVLINE 2 A vertical line.
twsBORDERBOX 3 A rectangular box.

24.2.4. RectType *SM_GetBorderRect(BorderType *border)

Returns a pointer to a RectType structure containing the border’s rectangle in window-relative
coordinates. If the border was specified in virtual coordinates, they are resolved first, so the
returned rectangle is the actual coordinates for the border at the time the function is called.
When finished, the application must free the rectangle.

RectType *borderrect;
BorderType *border;
/*...*/
borderrect = SM_GetBorderRect(border);
/*
** Additional processing....
*/
free(borderrect);

24.2.5. void SM_SetBorderLabel(BorderType *border, char *label)

Sets the title string used for the border. If the border is part of the active window, the border is
redrawn to reflect the change. The existing label, if any, is discarded and its memory reclaimed.

void SM_SetBorderPosition(BorderType *border, int position)

Sets the border label position to position, which must be one of the position constants defined
above. If the border is part of the active window then the border is redrawn to reflect the
change.

24.2.6. void SM_SetBorderRectangle(BorderType *border, RectType *r)

Sets the size and position of the border by setting the rectangle. The rectangle r can be virtual. If
the border is part of the active window, its redrawn to reflect the new border size.

24.2.7. void SM_SetBorderThick(BorderType *border, int thick)

Changes the thickness of the border border to thick. If the border is part of the active window it’s
redrawn to reflect the change. Note that multi-line borders draw the extra lines to the inside of
the border rectangle.

The TWS Window System Reference Release 4.0

154 Pixmaps

25. Hotregion

The Hotregion gadget is a polygonal area that is sensitive to an extended number of mouse and
keystroke events. However, unlike all other TWS gadgets, the Hotregion has no visual
representation at all. When an event occurs within the Hotregion, the gadget simply calls the
appropriate application callback function for that event.
The Hotregion then is unique in the following ways:

• It’s sensitive area is defined by a closed polygon, rather than a rectangle;
• There’s no intrinsic visual for a Hotregion;
• It responds to an extended set of mouse and keystroke actions, including: Cursor enters

region; cursor leaves region; mouse button clicked in region; and cursor dragged in region.
Each of these events has its own callback function.

Since a Hotregion has no visual, it can be set over a graphics image without disturbing that
image.

25.1. Creating a Hotregion
The hotregion is the only TWS gadget whose boundary is a polygon rather than a rectangle. This
allows the hotregion to enclose complex areas. The polygon may be non-convex or complex;
TWS uses the “odd-even” rule for determining polygon boundaries. The polygon must be closed
— that is, the last point and first point must be the same.
The function SM_CreateHotregion creates a hotregion:

int npts;
PointType *pts;
WindowType *w;
HotregionType *hotregn;
int (*userfunc)(HotregionType *),

(*enterfunc)(HotregionType *),
(*leavefunc)(HotregionType *),
(*dragfunc)(HotregionType *);

/* ...create polygon points... */
hotregn = SM_CreateHotregion(w, npts, pts, enterfunc, leavefunc, dragfunc, userfunc);

The values npts and pts define the polygon region where the hotregion is sensitive. They’re the
number of points in the polygon and the list of points, respectively. The point coordinates are
relative to the window content region. The hotregion callback functions are int functions that take
a pointer to a HotregionType as their argument.

The TWS Window System Reference Release 4.0

155 Pixmaps

25.2. Using Hotregions
Like all other TWS gadgets, the hotregion polygon is specified in window content coordinates.
However, many applications will want to use hotregions to add interactivity to graphics and
imagery. For example, an application might load an image of an office into a window, then set
hotregions over various parts of the scene (books, the phone, printer, etc.) to make the image
interactive.
TWS provides a number of convenience functions for converting coordinates to and from device,
window, graphics canvas, and other frames. The function SM_PtCanvasToContent takes an
x,y in window graphics canvas coordinates and returns a corresponding x,y in window content
coordinates. See the Utilities chapter for details.
Another help is that the TWS event structure contains the cursor coordinates in device, window
content and graphics canvas coordinate frames.

25.2.1. Hotregion Callback Functions

The callback functions for a Hotregion are int functions whose argument is a pointer to the
Hotregion gadget an event occurred in. There are five callback functions for a hotregion,
corresponding to four different event types:

• A function to draw the hotregion. This function is called whenever the gadget would
have to be drawn. Most TWS gadgets supply their own draw functions, but Hotregions
must be drawn by the application13. The draw function is an int function whose
argument is a pointer to the hotregion to be drawn. Remember that the polygon points
in a hotregion are in window content coordinates;

• A function to respond to an ENTER event. This function is called when the mouse
cursor goes from outside the hotregion to inside of it. An application may want to
change a region’s appearance, change the cursor or provide some other visual clue to
the user when the cursor enters a hotregion;

• A function to respond to a LEAVE event. This function is called when the mouse goes
from inside to outside the hotregion. Often an application will restore a region’s
appearance to some default when this happens;

• A function to respond to a DRAGMOTION event. This function is called when the user
drags the mouse inside the hotregion. It isn’t possible to drag the mouse outside the
hotregion — if the cursor crosses the hotregion boundary while being dragged, a
LEAVE event is generated and the region will ignore button drags until the mouse is
again within the region (but see the SM_HotregionMove function);

• A function to respond to BUTTONPRESS events. The application can use this function
to allow the user to ‘select’ the hotregion.

Any of these functions may be NULL in which case the region ignores the event. If the DRAW
function is NULL then the hotregion won’t be visible, but will still respond to events.

13Or not. The application doesn’t have to draw anything at all. The hotregion will respond to events just as well

when it’s unseen.

The TWS Window System Reference Release 4.0

156 Pixmaps

25.3. Interface Functions [hotregn.h]

25.3.1. HotregionType *SM_CreateHotregion(WindowType *w, int npts, int *pts, void
*data, int (*drawfunc)(), int (*enterfunc)(), int (*leavefunc)(), int (*dragfunc)(), int
(*userfunc)())

Create a new hotregion. The pts array is composed of (x,y) pairs of integers in the window
content coordinate frame. npts is the number of coordinate points in the array pts, such that for
all i < npts, (i*2) is the x coordinate, and (i*2+1) is the y coordinate.
Each of the functions is an application function whose argument is a pointer to a HotregionType.
The system calls the appropriate function on certain Hotregion events. If any function is NULL
then that event is effectively ignored.

25.3.2. void SM_HotregionMove(HotregionType *hr, int dx, int dy)

Translate the hotregion a distance (dx,dy). Positive numbers are to the right and down,
respectively.

25.3.3. int SM_DestroyHotregion(HotregionType *hr)

Remove a hotregion and free its memory. Like all TWS gadgets, hotregions are destroyed
automatically whenever their parent window is closed.

25.3.4. void *SM_GetHotregionData(HotregionType *hr) (macro)

Returns the data pointer of a hotregion.

25.3.5. int SM_GetHotregionNpts(HotregionType *hr) (macro)

Returns the number of points in the hotregion polygon.

25.3.6. int *SM_GetHotregionPts(HotregionType *hr) (macro)

Returns the polygon array for the hotregion.

The TWS Window System Reference Release 4.0

157 Pixmaps

Part Four

Utilities

The TWS Window System Reference and Tutorial Release 4.0

158 Standard Dialogs

26. Standard Dialogs
A standard dialog is simply a modal dialog function supplied with the TWS distribution. These are
provided as a simple and standard way of performing a number of routine user interface tasks.
First of all, a dialog is a window that contains information for the user which he may select or re-
spond to. Typically, dialogs are differentiated from ordinary program windows in several ways:
They have a specific purpose, such as informing the user of an error or allowing a file selection;
they are often not application-specific (any number of applications might want to allow the user
to select a file); and they are typically on the screen for just a short time.
A modal dialog box won’t let the user proceed with the program until he has responded to the
dialog. A non-modal dialog is more like a regular window, and will allow the user to move on to
other things and come back to the dialog. Writing a non-modal dialog is simply a matter of
creating a window, inserting the appropriate gadgets, and attaching the action function to an OK
button.
Modal dialogs are a bit different. They have to prevent the user from changing the active window
and must interrupt the application processing. In a way, they’re somewhat antithetical14 to the
whole event-driven paradigm. However, it’d be hard to design lots of things without them.
A TWS a standard dialog is called just like a regular C function. The application branches off to
the dialog function, and when the user has responded to the dialog the function returns. The
value returned by the dialog function indicates what the user did. For example:

rsp = SM_YesNoDialog(“Do you want to quit now?”, “Yes”, “No”);

displays the quoted message in a window, along with a button for OK (that is, yes) and a button
for Cancel (that is, no). The value returned depends on which button the user pressed. The
function won’t return until the user presses one of the buttons, and by the time it does return the
dialog window has been closed and the system state is as it was before the function was called.
The following dialog functions are provided:

26.1. Picklist

A picklist is a dialog window containing a Label, a Stringlist, a Slider, and two Buttons. The
purpose of the picklist is to allow the application user to select a string from a list of strings The
index into the list of strings of the string selected is returned.

26.1.1. Usage
#include <smpickls.h>
int n;

14Every now and again I like to drop in a five-dollar word, just so you’ll think you’re getting your money’s worth.

The TWS Window System Reference and Tutorial Release 4.0

159 Standard Dialogs

n = SM_Picklist(char *title, RectType *box, char **list, int nitems, int nstart, int
selected, int destroyflag)

titleTitle for the picklist window;
box............Rectangle for the stringlist portion of the picklist. The rest of the picklist window

is built around this box.
list.............Static array of strings to be displayed. Same as the Stringlist data type;
nitemsNumber of items in the list array. Same as the Stringlist data type;
nstartIndex of the first element in list to display in the box. Same as the Stringlist data

type;
selectedIndex of the initially selected string in list.
destroyflag .If true, the strings in list will be freed when the picklist window is closed, and the

list itself is freed. This assumes both the strings and the list of strings were
dynamically allocated.

26.1.2. Returns

Index of string user selected, or -1 if Cancel.

26.2. YesNoDialog

Displays a message in a window along with two buttons. The left button returns 0, the right
button 1. The button labels are supplied by the application along with the message, and the
buttons are both built large enough to hold the longest button string (i.e., the buttons are the
same size). The window is centered on the screen, it’s width is 1/2 the screen width. The text
message is word-wrapped as necessary to fit in the window, and the window depth is adjusted to
accommodate the wrapped lines and buttons.

26.2.1. Usage
#include <smyesno.h>
int n;
char *msg, *yesbuttonstring, *nobuttonstring;
n = SM_YesNoDialog(msg, yesbuttonstring, nobuttonstring);

msg................. Character string (NULL-terminated) message to be displayed.
yesbuttonstring.Character string displayed in the YES button (left)
nobuttonstring..Character string displayed in the NO button (right)

26.2.2. Returns

0 if left button pressed 1 if right button pressed.

26.3. File Selection Dialog

The TWS Window System Reference and Tutorial Release 4.0

160 Standard Dialogs

Displays lists of files and subdirectories. The user can select a file in the current directory by
clicking on its name in the file list, or can change to a subdirectory by clicking on a directory
name, or on ‘..’ to go up the tree. When a file is selected it’s appended to the path and displayed
in an editstring. When the directory is changed or the filename string is unselected, the filename
in the editstring is replaced by the file template.
The user may also enter a name by directly typing in the editstring. If a new directory path is
entered, the dialog will read it and load its contents into the lists. If a new file template (a file
name portion that includes wildcard characters) is entered a new list of files is presented based
on the template.

26.3.1. Usage
#include <filedial.h>
char *filename;
char *template;
filename = SM_GetFilename(template);

templateCharacter string, a DOS file template including path and wildcards as necessary.
The dialog will only display files matching the template. However, all
subdirectories will be displayed.

26.3.2. Returns

A malloc’d string containing the fully qualified file name selected (i.e., drive, path, file name and
extension), or NULL if the user presses the Cancel button. The application should free the string
when it’s no longer needed.

26.4. Three-state Dialog

The TWS Window System Reference and Tutorial Release 4.0

161 Standard Dialogs

Similar to the YesNoDialog except there are three buttons instead of two. This dialog uses the
same text wrapping and window sizing behavior. The application supplies the message and the
text for the three buttons.

26.4.1. Usage
#include <smync.h>
int n;
char *msg, *yeslabel, *nolabel, *cancellabel;
n = SM_YesNoCancelDialog(msg, yeslabel, nolabel, cancellabel);

msg.................A null-terminated character string containing an information message to the
user.
yeslabelA character string containing the label for the leftmost button;
nolabelA character string label for the center button;
cancellabelA character string label for the right button.

26.4.2. Returns

0 for the left button pressed; 1 if the center button pressed; -1 if the right button pressed;

26.5. One-state Dialog

A message dialog with only a single button. The dialog function simply returns a 0 when the user
clicks the button, which simply displays “OK”.

26.5.1. Usage
#include <smok.h>
int n;
char *msg;
n = SM_OKDialog(msg);

msg.................A null-terminated character string containing an information message to the
user.

26.5.2. Returns

0 when the user presses the button.

The TWS Window System Reference and Tutorial Release 4.0

162 Utilities

27. Utilities
These are functions that provide general assistance in some way, such as converting points to
different coordinate systems (different windows), screen dumps and so forth. As such this section
is a hodgepodge of stuff without any underlying data structures or semantics.

27.1. Interface functions smwutil.h

27.1.1. void SM_PtCanvasToContent(WindowType *w, int xo, int yo, int *x, int *y)

Takes a point (xo,yo) in graphics canvas coordinates and returns the same location in window
content region coordinates, all for the same window w.

27.1.2. void SM_PtDeviceToContent(WindowType *w, int xo, int yo, int *x, int *y)
Takes a point xo,yo in device coordinates and returns the corresponding x,y location relative to

the window w. If the original point is not within the window content then the resulting x,y could
be negative or greater than the content boundary.

27.1.3. void SM_PtContentToCanvas(WindowType *w, int xo, int yo, int *x, int *y)
Takes a point xo,yo in window coordinates (relative to the window content region) and returns

the corresponding point relative to the same window’s graphics canvas. If the window doesn’t
have a canvas region then the return value is unchanged.

27.1.4. void SM_PtDeviceToCanvas(WindowType *w, int xo, int yo, int *x, int *y)
Takes a point xo,yo in device coordinates and returns the corresponding location in window w’s

graphics canvas. If the window doesn’t have a graphics canvas then the returns value is
unchanged.

27.1.5. void SM_PtCanvasToDevice(WindowType *w, int xo, int yo, int *x, int *y)
Takes a point xo,yo relative to the graphics canvas region of window w and returns the

corresponding global device coordinates in x,y.

27.1.6. void SM_PtContentToDevice(WindowType *w, int xo, int yo, int *x, int *y)
Takes a point xo,yo relative to the content region of window w and returns the corresponding

global device coordinates in x,y.

27.1.7. int SM_SaveAsPCX(char *fname, RectType *r)

Given a rectangle r in device coordinates, writes the enclosed region of the screen to a PCX-
format graphics file names fname. If fname exists already it is overwritten. The graphics region
saved includes the rectangle boundary. The color format (16 or 256-color) of the PCX image is
based on the graphics kernel mode when the file is written.
Returns 0 on success, any other value indicates failure (probably disk full).
Note: Truecolor graphics kernel modes cannot be saved as PCX files. See also:
SM_SetPrintscreenProc.

27.1.8. int SM_SaveWindowAsPCX(WindowType *w, char *fname)

Saves the window w as a PCX file named fname. If fname exists it’s overwritten. The entire
window, including borders, is saved. The color format (16 or 256-color) of the PCX image is
based on the graphics kernel mode when the file is written.
Returns 0 on success, any other value indicates failure (probably disk full).

The TWS Window System Reference and Tutorial Release 4.0

163 Utilities

Note: Truecolor graphics kernel modes cannot be saved as PCX files. See also:
SM_SetPrintscreenProc.

27.1.9. int SM_SaveScreenAsPCX(char *fname)

Saves the entire graphics display screen to a PCX file named fname. If fname already exists it is
overwritten. The color format (16 or 256-color) of the PCX image is based on the graphics kernel
mode when the file is written.
Returns 0 on success, any other value indicates failure (probably disk full).
Note: Truecolor graphics kernel modes cannot be saved as PCX files. See also:
SM_SetPrintscreenProc.

27.1.10. int SM_SaveAsPostscript(char *fname, RectType *r)

Writes the contents of the rectangle r to a disk file in a monochrome PostScript™ format. Display
colors are converted to appropriate shades of gray. The resulting file can be sent to a
PostScript™ printer directly. Returns 0 on success, any other value indicates failure (probably disk
full). Unlike the PCX screen dump facilities, truecolor graphics modes can be saved. See also:
SM_SetPrintscreenProc.

SM_SetRectangle(static RectType *r, int x, int y, int width, int height)

Sets a TWS rectangle format (Xmin, Ymin, Xmax, Ymax) from a Xmin, Ymin, width and height set
of arguments. The x and y arguments are always set into the rectangle verbatim. A positive
width or height argument is used to calculate an appropriate Xmax or Ymax, as in Xmax = Xmin
+ width - 1. A negative value is set into the rectangle verbatim. The result is that
SM_SetRectangle can correctly set either normal or “virtual” coordinate rectangles.

The TWS Window System Reference and Tutorial Release 4.0

164 Tutorial

Part Five

Tutorial

The TWS Window System Reference and Tutorial Release 4.0

181 Tutorial

28. Tutorial
 In the next few pages we’ll try to put some of the previous tools and techniques together into
some real applications. Writing event-driven programs for interactive applications is hardly ever
“easy” (there are always so many darn details to look after!), but with TWS you have a collection
of tools that ought to make the job far more manageable.
All of the code presented is included in the distribution. There are many more example and demo
files in the distribution than are presented here. A table near the beginning of this document lists
all the example code files and what is emphasized in each one. It’ll be helpful if you have the
example programs to refer to as you go through the following brief tutorial.

28.1. Getting Organized
Throughout this manual we’ve talked about some important concepts like event-driven programs,
object-centered design and so on. Let’s stop now and define just what the heck all this means.

28.1.1. Event-Driven Programming

First of all, remember that in an event-driven environment, the user performs actions based on
the interface the program presents to him. The application then responds to the user’s actions.
This is just the opposite of the classical approach, in which the program makes demands of the
user (enter this value now), and the user responds to the program. In general then an event-
driven program won’t be a linear path from beginning to end. Instead it’ll be a collection of
relatively independent modules which have a predefined connection to the user interface.
Here’s an illustration. Suppose a CD player operated the way an old-fashioned linear program
did. First of all, the CD player would have only three buttons on it (On/Off, Yes, and No) and
maybe a panel so the player could show you messages. When you turned the CD player on (i.e.,
“ran the program”) the CD player would ask you to insert a disk and press the “Yes” button. If
you pressed the button without putting the disk in it would ask you again, and keep asking you
until you either put in a disk or turned off the power.
When you put the disk in it would ask if you want to play track one. Your only choice would be to
press Yes or No or turn off the player. If you answer no it might ask if you want to play track
two, and so forth through the selections.
An event-driven program works more like a real CD player. When the Play button is pressed, the
player must determine the system state. Is a CD inserted? Check and see. Is the disk already
playing? Check and see. Play the first track or select a track at random? Check if the Random
Selection button is active or if a specific track button was pressed, otherwise do some ‘default’
action. And so on.
Few users would opt for a CD player that worked like the first scenario but it would probably be a
lot easier to build. The same goes for an event-driven program. The goal is to produce
applications that are easier for users but, until you get used to it, it’s a somewhat more
complicated approach.

28.1.2. “Object-centric” Programming

Event-driven programming seems to go hand-in-hand with an “object-centric” approach to
application development. The TWS user interface tools can be used in many different ways, but
the most common approach integrates program data and user interface components (gadgets
and windows) into program objects. Windows contain collections of these objects and might be
considered containers for a program’s basic objects. In object-centric lingo, we would say that a
TWS GUI object encapsulates its own behavior (the visual appearance of a button, for example),
data (through the button’s data pointer field), and operations on the data (through the button’s
internal code and application callback function) into a single package, the TWS gadget or
window.

The TWS Window System Reference and Tutorial Release 4.0

182 Tutorial

TWS is “object-centric” rather than “object-oriented” because TWS lacks some true object-
oriented features, notably inheritance and polymorphism.
Callback procedures are central to TWS applications. A callback procedure is a function written by
the application programmer. The callback procedure can examine and modify the data attached
to its parent object. Of course, in the end a callback procedure is just another function in your
application.

Window Procedure Gadget Callback

Background Procedure

28.1.3. Designing a TWS Program

The key to successful TWS programs is the same as for any programming. Applying the TWS GUI
library to your projects only affects somewhat the programming style, not the fundamental
concepts of software development. As always, your projects will proceed more smoothly if you
apply the principles you already know:

28.1.3.1. Understand the problem

Take a little time to explore the problem you’re trying to solve in software. What should the
program do, and how will it get done? What should it not do? What features are most
important right away? What features will likely be added later? Make notes.

28.1.3.2. Find the objects in the problem

What are the things in the problem? How can your things be represented in code? Images?
Documents? Files? What operations need to be performed on these things? How are different
things in the program related?

28.1.3.3. Sketch organization of objects

As you’re getting a handle on the program’s objects, sketch their attributes, operations, and
relationships. Think about a user accessing and manipulating your objects.

28.1.3.4. Use windows intelligently

Lots of times a program object will be presented to the user as a window or dialog, with
gadgets providing access to the object’s internal data and functionality. Once the
organization of objects in your program starts developing, you can start sketching window
and gadget layouts.

The TWS Window System Reference and Tutorial Release 4.0

183 Tutorial

28.1.3.5. Plan for errors

Remember that in an event-driven program the user almost always has many different
choices he can make. Usually some of those choices will be incorrect in some way.

28.1.3.6. Iterate

Creating software is always an interative process. Be open to new understanding and insights
which will change and improve the program.

28.2. The Basics
This first few lessons don’t do anything particularly interesting. They basically show setting up
the TWS framework, #include files, initialization and so forth. Bear with me.
The simplest TWS program simply establishes the graphics environment, turns on the application,
and sits in its event loop. No menus, no fancy graphics. Not very interesting. But this basic
structure will be repeated over and over in your real applications, so let’s look at wintest2.c...

#include <stdio.h> /* Required for NULL definition */
#include <smwindow.h>
#include <smevent.h>
#include <smtypes.h>

main(int argc, char **argv)
{
 EventType ev;
 int msg;

 SM_Init(0, 0); /* Initialize graphics system */
 SM_OpenApplication("TWS Windows", NULL); /* Create application screen */
 while (True) {
 SM_GetNextEvent(&ev);
 msg = SM_ProcessEvent(&ev);
 if (msg == KEYPRESS) {
 SM_Exit(NULL);
 }
 }
}

This is a complete, working TWS program that does nothing but display its own name. It’s
singular distinction is that it includes everything any TWS application program needs to work
properly. Let’s look at those things in detail.

28.2.1. Header files

Each component of the TWS library has a header file associated with it. For example, applications
that use Buttons will #include smbutton.h, those that use pixmaps will #include smpixmap.h and
so forth. Every TWS application uses windows (the workspace is a window), events, and fonts, so
those headers are required for every application. The smtypes.h header file contains additional
global types and constants and should also be included.
The ordering of header files is unimportant. Most header files in turn #include whatever
additional header files they need internally, so the application doesn’t have to worry about
multiple dependencies.

28.2.2. System initialization

The function SM_Init puts the video system into the appropriate graphics mode, initializes
internal TWS data structures, reads the TWS.CFG configuration file, loads fonts, and in general
prepares the hardware and software to support a GUI. Much of this is very hardware-dependent,
particularly the graphics and mouse hardware.
The parameters to SM_Init are the code values used by the underlying graphics kernel system
to set the graphics card mode and mouse device support. For example, for a MetaWINDOW

The TWS Window System Reference and Tutorial Release 4.0

184 Tutorial

graphics kernel, you could pass the macros VESA1024x768X and MsCOM1 for a VESA video card in
1024x768x256 color mode, and the Microsoft Mouse driver on Com 1, respectively.
If a parameter is 0, SM_Init uses the device value from the TWS.CFG configuration file. In this
case, the value in the configuration file must be the exact numeric value for the device. For
example, the numeric value for VESA1024x768X is 0x1a33 (6707), which is the value that must be
in the configuration file. If the value in the configuration file doesn’t match a value supported by
the graphics kernel, or if the configuration file is missing, then the application will not run. TWS
itself has no intrinsic defaults for either the mouse or graphics device. The application must
supply this information.

This is a very important point for TWS programmers. There are a large number of graphics
hardware devices and all professional graphics kernel systems, like MetaWINDOW, support a
large number of them. However, in almost all cases it’s impossible for the software to
automatically determine which graphics hardware (Diamond Stealth? ATI Wonder?) is installed.
Therefore, a graphics application should always provide some method for the user to specify
which hardware is in use, and what video mode to run. This capability is unique to the graphics
kernel system and is not included in TWS itself.

Once system initialization has been done, the application can create TWS data items but still can’t
display anything on the screen. The video will be in graphics mode and the mouse will be started.
The application could start building menus, windows, etc., but nothing can be displayed until the
application itself has been initialized.

28.2.3. Application initialization

Before any windows can be displayed, the application initialization function
SM_OpenApplication must be called. This establishes the workspace window that all other
TWS windows must be drawn in; sets the application title bar and menu, if any; and sets the
window stack pointers appropriately. The workspace is drawn.
Now the application can start displaying its windows and graphics.

28.2.4. Event loop

The heart of any TWS application is the event loop. “Loops” I should say, since many complex
applications will have event loops in various parts of the program, depending on what’s going on.
Since the concept of event handling is so fundamental to TWS programming, we ought to take
some time to discuss it in detail.

28.2.4.1. Event-driven design

Most beginning students of computer programming first learn to write “process-driven”
programs. A process-driven program performs its work sequentially, requesting input from the
user when the program is ready to accept it, and ignoring the user at all other times. If the user
does something unexpected the program either stops or just waits until the user does the right
thing.
Event-driven programs work differently. At any given time, an event-driven program may allow
any number of different actions by the user. In general the program doesn’t care which of these
actions is taken or in which order they occur, and must be ready to do something reasonable no
matter what course the user chooses. Instead of spending most of its time processing and very
little time listening for user input, an event-driven program’s priority is to pay attention and
respond to user actions.
The advantages of event-driven programs from the user perspective are many and well
documented. Programmers often find event-driven programming difficult and confusing at first,
especially if they have to develop their own event handling systems. The advantage of a library

The TWS Window System Reference and Tutorial Release 4.0

185 Tutorial

like TWS is that most of the grunt work has been done. However, you must still design your
application and decide how it will react to every possible user input event.

28.2.4.2. What is an event?

From the above discussion it might be assumed “event” is synonymous with “keystroke”, or
perhaps “mouse-button-press-or-keystroke.” In fact there’s no fixed definition for an event. In
general, an event is an occurrance that a software system should notice. This concept of events
lets us define specific event instances in the context of the application. Events can and often are
keystrokes and mouse button presses, but they can also be the arrival of a specific time and
date, the opening of a specific file, the amount of free RAM reaching a certain level, or anything
else that makes sense for the application at hand.
One characteristic that all events share is that they may occur at any time, asynchronously and
unpredictably15. The goal of event-driven program design is to be prepared to do something
reasonable for every possible event.
Since TWS is a user interface library, it responds to keyboard and mouse events, which the user
can cause, and timer events, which the user can’t cause but are nevertheless important for
building a user interface. It also defines other events, like when a window is moved or the active
window changes, that are called window manager events elsewhere in this manual.

28.2.4.3. Event handling and callback functions

The task of doing something in response to an event is termed “handling” the event, and the
code that does so is called an event handler. TWS provides a large measure of default handling,
and also gives an application the opportunity to establish its own event handlers. Sometimes the
mechanism that lets the application set its own handlers is called a hook.
There is more than one way to accomodate application vs. system event handling. In TWS,
different types of events are accomodated differently. “Hardware” events, like keystrokes and
mouse buttons, are not usually handled directly at the application level. For example, you don’t
have to watch for all mouse button events, see where the button was pressed, etc., in order to
make gadgets work. TWS does all of that internally. In fact, if a user interface gadget does
handle a hardware event, the rest of the application will never see it.
Applications handle events through the callback function mechanism. These are the application
routines that are attached to windows and user interface gadgets. When a user activates a
gadget by clicking on it or whatever, the callback function is automatically invoked.

28.2.4.4. Events vs. messages

A message is a notification from one part of the system to some other part(s) of the system that
something has occurred. The differences between messages and events are that: 1) messages
can be generated from any program level, including application code; 2) there is not a fixed set
of messages for all applications; 3) there is no direct mechanism for “handling” messages, nor is
there any default action in response to specific messages; 4) TWS itself ignores messages
completely.
The TWS function SM_ProcessEvent returns a message. A message is simply an integer value
that has been given some meaning. Some meanings are defined by TWS, but an application may
define its own.
The message returned by SM_ProcessEvent depends on the event it processed. For example,
most of the TWS example programs look for a message of KEYPRESS, and exit if that message is
received. A message of KEYPRESS means that the event passed to SM_ProcessEvent was a
keystroke that was not processed by any gadget or window. An application can expand on this
with its own messages, which are passed back from application callback procedures through the
event loop. This concept is described in more detail later.

15Yes, even the specific-day-and-time is an unpredictable event. Whose to say that time will ever come?

The TWS Window System Reference and Tutorial Release 4.0

186 Tutorial

Quitting the Application

A TWS program must call SM_Exit before exiting. This function encapsulates the graphics kernel
shutdown routines, as well as TWS-specific termination routines. While there are very few
guarantees in life, I can guarantee that if a TWS program ends without calling SM_Exit, the
computer will have to be rebooted!

28.3. Adding an Application Menu
Since almost all applications will use menus the next thing we’ll do is add a menu to the program
(file wintest3.c).
This program is almost identical to the first one. To add menus to our program we make the
following modifications:

• #include the file smmenu.h
• For each different menu and submenu in the application declare a MenuType * variable;
• Build each menu by adding items to it;
• Attach the top-level menus to their windows when the windows are created.

A menu is created by the SM_CreateMenu function. Every menu, including submenus, must be
created before items are added to it. Then SM_AddMenuItem is called for each item in the
menu:

menu = SM_InitMenu();
SM_AddMenuItem(menu, SUBMENU_ITEM, "File", NULL, NULL);
SM_AddMenuItem(menu, ACTION_ITEM, "Quit", NULL, NULL);

Note that both of the menu items attached to menu have neither action functions nor submenus.
You would be unlikely to do this in your own programs, but it works for educational purposes (or
to “stub” your menus before you’ve written the menu functions). Items are added to menus left
to right or top to bottom based on the order they’re added to the menu.
How do we know whether a menu will be a horizontal bar or a pull-down? The menu that is
directly attached to the window is always a horizontal bar menu. Any submenu of that menu (and
all subsequent submenus) are pull-downs:

SM_OpenApplication("TWS Windows", menu); /* Create application screen */

Since menu is directly attached to the application workspace it will be a horizontal bar menu.
If you move the cursor over one of the menu labels and press the left mouse button, you’ll see a
rectangular depression over the selected menu item. Nothing else will happen. Technically it is a
menu, though it’s a pretty boring example.
Time to put a window on the screen.

28.4. Windows At Last!
In the next example we’ll finally put something on the screen that looks like a real windowing
GUI. You’ll be surprised how little extra work we have to do (see file wintest4.c).
The additions necessary to get a simple (and empty) window on the screen are:

• Add a WindowType * variable;
• Specify the size and position of the window’s content region by building a rectangle with

the appropriate dimensions. That means we also need a RectType variable;
• Create the window by calling SM_NewWindow, assigning the returned window pointer

to our window variable;
• Open the window on the screen with SM_OpenWindow.

The TWS Window System Reference and Tutorial Release 4.0

187 Tutorial

Besides adding the appropriate variable declarations, here’s all the extra code necessary:

r.Xmin = r.Ymin = 100;
r.Xmax = r.Ymax = 300;
w = SM_NewWindow(&r, "Test Window", DOCUMENT | NOBACKING, NULL, NULL);
SM_OpenWindow(w);

These statements are added after we’ve opened the application and before the event loop starts.
The meaning of the various parameters and numbers, if not obvious, are explained in the
previous Windows reference section.
So now we’ve got a window – so what? What can we do with it? We can move it around on the
screen, enlarge it to its maximum size and restore it (but not minimize it, since we didn’t create
an icon for the window), resize it by dragging the borders, and close it. All of which is happening
inside the event loop we added in the second example – the event processor finally has
something to keep it busy!

28.5. So Far...
Let’s stop here and summarize. We’ve now seen the rudiments of a basic TWS window
application. Here are the steps:

• Be sure the #include the necessary headers. All programs need smwindow.h, smtypes.h,
and smevent.h as a bare minimum;

• Initialize the TWS system;
• Create the application menu. You may also create other menus for use by other program

windows, which we’ll do in a later example;
• Open the application;
• Create and open application windows as necessary;
• Enter the event loop;
• Be sure there’s a way to call SM_Exit to exit the program.

Of course, there are still a lot of things we’d like to do that we haven’t seen yet. We haven’t built
any gadgets or done any graphics; we haven’t built any submenus or added any functionality to
the window menu; we haven’t added any window callback functions or background procedures;
shoot, we haven’t done any application code yet! All of which we’ll get to – this just looked like a
good milestone.

28.6. Simple Drawing
In this example we’ll write a simple drawing program. Again, this is about the simplest program
that could possibly be called a drawing program, but nonetheless it does draw lines in a window.
The code is in the file windraw.c.
The main new thing here is the addition of a window callback function. This is a function
‘attached’ to an application window that is called repeatedly by the event processor whenever the
window has the focus. The window callback function is attached to the window using the
SM_SetWindowProc call:

SM_SetWindowProc(w, TWSDraw);

Since this is our first window function it’s reproduced in its entirety below:

int TWSDraw(WindowType *w, EventType *ev)
{
 static int oldx = -1, oldy = -1;
 int x, y, nx, ny;
 int state;

The TWS Window System Reference and Tutorial Release 4.0

188 Tutorial

 /*
 ** We know if we get here that the window is the focus window, but we
 ** don't know if the event occurred in this window. We can check it...
 */
 if ((ev->Type & BUTTONPRESS) && (ev->Region == CANVAS_REGION)) {
 /*
 ** While we're drawing we want to XOR the line so it can appear to
 ** move along with the cursor
 */
 GR_SetDrawMode(w, SMXOR);

 GR_GetMouse(w, &state, &x, &y);
 /*
 ** If the old point is negative then we haven't been here before
 ** so set the anchor point to the current point
 */
 if (oldx == -1) {
 oldx = x;
 oldy = y;
 }

 GR_DrawLine(w, oldx, oldy, x, y);

 /*
 ** While the mouse button is down we want to trap it and draw a
 ** rubber-band line to follow it around
 */
 while (state & LEFTBUTTONACTIVE) {
 /*
 ** If the new cursor position is different from the previous
 ** position then erase the previous line and draw a new one
 */
 GR_GetMouse(w, &state, &nx, &ny);
 if ((nx != x) || (ny != y)) {
 GR_DrawLine(w, oldx, oldy, x, y); /* Erase old line */
 GR_DrawLine(w, oldx, oldy, nx, ny); /* Draw new line */
 x = nx; /* Save new cursor position */
 y = ny;
 }
 }

 /*
 ** At this point the left mouse button has been released.
 ** Set the line mode to overwrite and draw the line again
 */
 GR_SetDrawMode(w, SMREP);
 GR_DrawLine(w, oldx, oldy, x, y);
 oldx = x;
 oldy = y;
 }
 return True;
}

A window callback function must have two arguments – a window pointer and an event pointer.
When called the window pointer will point to the function’s parent window, and the event pointer
will point to the system event that just occurred.
If a window is active its window callback function is called on every pass through the event loop.
Often a window function is only interested in certain things, such as a particular type of event.
The first thing it should do therefore is see if an interesting event has occurred and, if not, return
immediately. TWSDraw does that in the first if-statement.
Once we’re assured that an event we’re interested in has occurred, we can process the event. In
this case, we’re looking at the left mouse button state. If it’s pressed, we’re going to draw a
‘rubber-band’ line from the endpoint of the last line drawn to the tip of the cursor. When the left
mouse button is released we’ll draw the line in place and update the new endpoint. The result is
a series of connected line segments in the window.

The TWS Window System Reference and Tutorial Release 4.0

189 Tutorial

There’s nothing particularly remarkable about the code itself but a few comments are in order on
the function’s organization. Note the ‘static’ keyword for the oldx and oldy variables. It’s not
unusual for a window function to use lots of static variables since, for user response reasons,
these functions seldom complete their work in a single call. Instead, window functions (like
background procedures) usually chop a task into bite-size chunks. After each chunk the function
‘remembers’ where it is and returns so the event manager can see if the user has done anything.
On the next pass through the event processor, the window function continues where it left off.
We use this piecemeal approach to minimize the lag time between the user doing something and
the system responding to it.
We used the SM_GetMouse function for the inner loop. Why not put an event loop here? We
could have. In this case we are not interested in events in general, only in the mouse state, so
it’s more efficient to query the mouse directly.
However, if we had a background procedure installed, we might have used an event loop here,
probably with an event grab. That would have allowed the background procedure to continue to
execute while lines were being drawn, but would have created a bit of a lag in the drawing itself.
The amount of lag would depend on what the background process was doing.
The function returns True to indicate that it fully processed the event passed to it. This value
becomes the return value for SM_ProcessEvent and will be passed back to the event loop in
main. If we wanted to we could send simple ‘messages’ back to the main event loop this way.
Finally, try moving or resizing the window after drawing a few lines. The lines disappear! That’s
because we didn’t provide any way for the lines to be redrawn whenever the window has to be
redrawn – all TWS knows to do is clear the window. Also, when the window is enlarged, the line
drawing is not clipped at the window border, but within a smaller rectangle. That’s because the
graphics state canvas is not resized along with the window borders. Again, we could write code
to make this happen, if we wanted to. Maybe later...

28.7. A Gadget Example: TWSCalc

The TWS Window System Reference and Tutorial Release 4.0

190 Tutorial

In addition to window functions, gadgets are the most common method of controlling an
application. The TWSCalc application demonstrates the use of gadgets. The file calc.c
implements a simple 4-function calculator built totally of buttons and labels.
The first interesting thing in this program is the function BuildButtons. Notice that all the but-
tons are built using virtual coordinates. If you want the calculator to be larger or smaller, all you
have to do is drag one of the resize handles. The calculator buttons will resize themselves to fit
the new window.
Next, notice that all the numeral buttons have the same callback function and all the operand
buttons have the same callback function. There’s no rule that says each gadget has to have a
unique function.
Finally, notice that all the buttons have the calculator display label stored in their user data fields.
Why? Let’s jump down to the EnterNumber function, which is the user function attached to the
numeral buttons. It’s short so we’ll reproduce it here:

int EnterNumber(ButtonType *b)
{
 int i;
 char *s;
 LabelType *l;

 /*
 ** The button label is the numeral
 */
 s = SM_GetButtonLabel(b);
 currinput[strlen(currinput)] = *s;

 /*
 ** Retrieve the display label, attached to the button data field,
 ** and change the label string. This automatically redraws the label
 ** because in the program the calculator window is always focus
 */
 l = (LabelType *)SM_GetButtonData(b);
 SM_SetLabelString(l, currinput);
 return True;
}

The argument to a button callback function is a pointer to a button. By storing a pointer to the
label in the button’s user data field, we can retrieve the label, change the string and redisplay it
every time a button is pressed.
The other buttons all work about the same way. The actual details of how the calculator itself
works aren’t very interesting. The point here is to see TWS in action.
Finally, take a look at the About function at the end of the file. This is an example of a simple
dialog window for displaying program messages, warnings, and errors. Note that, again, I’ve
used virtual coordinates for the labels, and the strings are centered. The “OK” button closes the
window. This isn’t a modal dialog because you can click in the TWSCalc window and activate it
while the About TWSCalc window is displayed – you can even open multiple copies of the
About... window!

28.8. Hands-off Graphics: TRISERACT

The TWS Window System Reference and Tutorial Release 4.0

191 Tutorial

The final example, in triserac.c, is the Triseract program. This program demonstrates several
TWS features: color palette control, background processing, the text gadget, and window resize
and close procedures.
A triseract is a nonsensical word for a triangle that deforms itself in size, shape and position over
time. It’s a simple and colorful (on a 256-color system) pattern that I sometimes crank up as a
screen saver. It also has two other text windows: one gives a brief description of the program
(how it works), the other a brief overview of the TWS system and how to register.
After setting up the window system and building the application menus, the program sets up the
color palette for the triseract window. The palette setup will be different if the current graphics
mode supports 256 colors or 16 colors. The color assignments are arranged so that a ‘rainbow’ of
color is set up.
The TRISERACT program uses a background procedure for most of the work. A background
procedure is similar to a window callback function, except that a window callback is only called if
the parent window has the focus. A background procedure is called even if its parent window
isn’t the focus window -- even if the parent window isn’t open!
Before we can use background procedures we have to initialize the background processing
system:

SM_InitBackgroundProcs();

Next the Lines function is registered as a background procedure:

id1 = SM_RegisterBackgroundProc(w, Lines, ALLEVENTS | NOTOBSCURED);

The flag ALLEVENTS | NOTOBSCURED tells the background procedure that the function Lines
should be called for every event, but only if its parent window w is not obscured by any other
window. That doesn’t mean the window has to have the focus, only that no other window, focus
or not, is in front of it.
Next special resize and close procedures are attached to the triseract window:

The TWS Window System Reference and Tutorial Release 4.0

192 Tutorial

SM_SetResizeProc(w, ResizeWin);
SM_SetCloseProc(w, CloseWin);

Why does the Triseract window need special attention? When the window is resized, we want the
window’s graphics canvas to fill the window. Remember that by default the graphics canvas is
fixed in size. The ResizeWin function sets the graphics canvas to the same size as the window’s
content.
CloseWin just removes the background procedure function. If we didn’t do that when the
window is closed the background function would certainly barf, since its parent window would no
longer exist! This is a rule you should always remember: background functions must always
be removed when their parent windows are closed! We could call this “The First Law of
Background Procedures”.
The Lines function just draws a triseract triangle. Note: triangle singular. Each call to Lines only
draws a single triangle. This is “The First Law of Event-Driven Programming”: whatever you have
to do, keep it short and get back to the event loop fast! Other than this important observation
there’s nothing remarkable about this function.
The About and HowItWorks functions are not too remarkable either. Both open separate
windows and fill them with text (in the form of text gadgets). Again, we have resize procedures
so that the text bounds are kept the same size, more or less, as the window content.

28.9. Additional Examples
The few preceding examples have been developed to show off the basics of programming using
the TWS system. The TWS distribution contains a number of additional examples you’ll want to
look at.

The TWS Window System Reference and Tutorial Release 4.0

193 Index

Index

A
absolute coordinates, 69
ACTION_ITEM, 51, 52, 53, 187
ACTIVEONLY, 43
ALIGNCENTER, 33, 97, 127
ALIGNCENTER, 105
ALIGNLEFT, 97, 105, 106, 108, 113, 127, 128
ALIGNRIGHT, 97, 105, 106, 108, 127
ALLEVENTS, 43, 193
ALTDOWN, 36
AppTitle, 18
asynchronous, 62

B
background procedure, 193
background process, 193
background processing, 4, 42, 43

initialization, 48
registering functions for, 49
stopping, 49

BackgroundProcIDType, 42, 49
BackgroundProcNodeType, 42
BackgroundProcType, 42, 49
backing store, 10, 21, 30
BASE_MENU_REGION, 31
BevelDepth, 70
BEVELED, 70, 96
blocking, 71, 75, 77, 79
Border, 135

color of, 136
label position, 136
thickness of, 136

BorderWidth, 17
Button, 99, 100, 102, 103, 104, 105, 108, 143, 144, 189, 191

active state, 100, 103
callback function, 100, 104
colors, 100, 103
data, 103
default, 100, 103, 122
default state, 100
graphics in, 100, 103
label, 100, 103
Pixmap, 100, 103

BUTTONPRESS, 140
ButtonType, 100, 102, 103, 104, 115, 127, 191

C
callback procedures, 182
canvas. see Graphics State, canvas
CANVAS_REGION, 31
CAPSLOCKDOWN, 37
CAPSLOCKON, 36
Checkbox, 105, 106, 107, 108, 109

callback function, 106, 107
color, 105
group, 108
label, 105, 106, 107
state, 106, 107

user data, 106
visual, 105, 106, 107

Checkbox group, 107
Checkbox Group, 105, 106, 107, 108, 109

boundary, 107, 108
callback function, 108
label, 108
title, 108

CheckboxGroupType, 107, 108, 109
CheckboxType, 105, 106, 107, 108, 109
CHISELED, 70, 96
CLOSE_REGION, 31
color, 29, 75, 76, 77, 78, 80, 86, 87, 103

allocation, 80
focus window and, 84
graphics

background, 72
graphics

drawing, 77
look-up table (LUT), 80, 81, 88
owner, 83, 84
reserved, 84
reuse, 87
scheme, 24
sharing, 87
system, 70, 76, 85, 86, 87
text, 24, 25
truecolor, 87, 88
window, 70, 85, 86, 87
window content, 15, 24, 27
window palette, 75, 78

color
graphics

background, 74
colors

system, 80
window, 80

ColorType, 24, 25, 27, 72, 74, 75, 76, 77, 78, 83, 85, 86, 87, 103,
131

configuration file, 21, 25
Configuration variables

FontPath, 54
content region:.
CONTENT_REGION, 31
CTRLDOWN, 36
CTRLNUMLOCK, 37
Cursors, 58, 79

hotspot, 58
masks, 58
window regions and, 58

CursorType, 58

D
dialog

modal, 143, 192
non-modal, 143

Dialog, 143
DIALOG, 31
DIALOG (window type), 21
DOCUMENT (window type), 21, 188
DOS, 145

The TWS Window System Reference and Tutorial Release 4.0

194 Index

DOWN, 33, 34
DOWNLEFT, 31
DOWNRIGHT, 31
DRAGMOTION, 140
dynamic font loading, 54

E
Editstring, 122, 123, 124

callback function, 123
EditstringType, 123, 124
encapsulation, 182
Enter key, 99

Buttons, 100
ENTERKEY, 122
EV_WINCHANGE, 40
EV_WINCLOSE, 40
EV_WINMOVE, 40
EV_WINNEW, 40
EV_WINSIZE, 40
event

draw, 69
event loop, 35
event processing, 49
event queue, 48
PrintScreen, 47
redraw, 69
return value, 35, 190
window management, 15

Event
definition of, 185

event handler, 186
event loop, 183, 185
event-driven programming, 181, 193
EventFlagsType, 42, 49
Events

BUTTONPRESS, 140
DRAGMOTION, 140
ENTER, 140
event handler, 186
event loop, 185
LEAVE, 140
LEAVE event, 140
messaging and, 186
window manager events, 185

EventType, 32, 42, 48, 123, 183, 188

F
FLAT, 70, 96
focus window:. see window, focus
FontPath, 17, 54
fonts, 17, 25, 72, 78, 79, 105, 126
Fonts, 54

current font, 55
dynamic font loading, 54
font table, 54
gadget font, 56
icon font, 56
stroked fonts, 55
swapping, 54
system, 54
system font, 57
title font, 57

FontType, 125

FOURD, 96

G
gadget, 90

boundary, 93
cast to window, 30
generic, 90, 96
graphics in a, 92
parent window, 94, 193
shell procedure, 90
superclass, 90
user procedure, 90

gadgets
window design and, 10

Gadgets
Border, 135
Hotregion, 139
Pixmap, 65

GadgetType, 90, 91, 96, 105, 107, 110, 115, 117, 125, 127, 130
GR_CharWidth, 72
GR_ClearCanvas, 72
GR_CloseGraphState, 72
GR_CreateGraphState, 72
GR_DrawArray, 72, 83
GR_DrawCircle, 73
GR_DrawLine, 73, 78, 189
GR_DrawPoint, 73
GR_DrawPolygon, 73
GR_DrawRect, 73
GR_DrawString, 74
GR_GetBackgroundColor, 74, 83
GR_GetCanvasDepth, 71, 74
GR_GetCanvasRect, 74
GR_GetCanvasWidth, 71, 74
GR_GetCursor, 74
GR_GetDevicePoint, 74
GR_GetDrawColor, 74, 83
GR_GetGraphicsLocator, 74
GR_GetImage, 70, 71, 74
GR_GetMouse, 48, 74
GR_GetPalette, 75
GR_GetPoint, 75
GR_GetTextLocator, 75
GR_HideCursor, 75
GR_ImageSize, 70, 71, 75
GR_InsetRect, 29, 75
GR_IsBlocked, 75
GR_LimitMouse, 75, 79
GR_LineTo, 75
GR_MouseInCanvas, 75
GR_MoveTo, 75
GR_OffsetRect, 76
GR_ProtectCanvas, 76
GR_ProtectOff, 76
GR_PutImage, 76
GR_SetBackgroundColor, 76, 78, 83
GR_SetBlocking, 77
GR_SetCanvasBorder, 77
GR_SetCanvasRect, 77
GR_SetDrawColor, 77, 83
GR_SetDrawMode, 78, 189
GR_SetFont, 78
GR_SetLineStyle, 78
GR_SetLineWidth, 78

The TWS Window System Reference and Tutorial Release 4.0

195 Index

GR_SetPalette, 78
GR_SetRect, 78
GR_SetTextMode, 79
GR_ShiftPolygon, 79
GR_ShiftRect, 79
GR_ShowCursor, 79
GR_StringWidth, 79
GR_TextWidth, 79
GR_UnlimitMouse, 75, 79
GR_UnsetBlocking, 79
GRAPHCURSOR, 58, 59
GraphDevice, 17
graphics

canvas, 10, 73, 74, 75
kernel, 87

graphics
canvas, 72, 73, 74

graphics canvas, 4, 12, 16, 92
Graphics State, 25, 68, 73, 74, 75, 78, 81

background color, 69
canvas, 68, 69, 190, 193

border, 70, 77
images and, 70, 71

color palette, 88
colors, 70
cursor, 69
drawing color, 69
rasterop mode, 68
text color, 69
window palette, 69

GraphStateType, 20
GRDASHLINE, 78
GRDOTLINE, 78
GRMAXIMAGE, 71
GRNORMAL, 78
GRWIDTHNORM, 78
GRWIDTHWIDE, 78

H
HORIZONTAL, 111, 116
HORIZONTAL (Slider type), 112
Hotregion, 4

callback functions, 140
Hotregion, 139

I
icon, 9, 65, 188

background processes, 65
creating, 66
moving, 66
pixmap, 65, 66
position, 65
restoring window, 65
setting, 65
title, 66

IconType, 66
images, 70, 76
ImageType, 70, 71, 76
INACTIVEONLY, 43
initialization, 183

application, 184
system, 184

INSERTDOWN, 37

INSERTON, 36

K
KEYPRESS, 183, 186

L
label, 50, 52, 102, 103, 104, 105, 106, 108, 191
Label, 143

boundary, 96, 97
creating, 97
graphics in, 97
text alignment, 96, 97
text attributes, 96, 97
virtual coordinates and, 96

LabelType, 96, 97, 98, 113, 114, 127, 192
LEFT, 33, 34
LEFTALTDOWN, 37
LEFTBUTTONACTIVE, 75, 189
LEFTCTRLDOWN, 36
LEFTSHIFTDOWN, 36
License Agreement, 1
LLRESIZECURSOR, 58, 59
locator. see Graphics State, cursor
LRRESIZECURSOR, 58, 59

M
MAINCURSOR, 58, 59
MAXIMIZE_REGION, 31
menu, 21, 22, 26, 50, 51, 52, 186, 187, 188, 193

active state, 51, 52
application, 8
attaching to a window, 52
callback function, 51, 52
horizontal, 187
pull-down, 10, 187
save-under, 10
submenu, 51, 52, 53
window closing, 50
workspace, 50

MENU_DIVIDER, 51
MENU_REGION, 31
MenuType, 20, 21, 22, 26, 27, 50, 52, 53, 187
message, 62, 63, 186

addressing, 62
asynchronous behavior of, 62
data, 62
dictionary, 62
example using, 63
initialization, 63
message queue, 62
pending, 62
posting, 62, 63
protocol, 62
queue, 63
retrieving, 62, 64

MessagePacketType, 62
MessageType, 62
Metagraphics

MetaWINDOW, 2, 4, 17, 184
MIDDLEBUTTONACTIVE, 75
MINIMIZE_REGION, 31
mouse, 43, 48, 79, 99, 100, 105, 122, 187, 189

The TWS Window System Reference and Tutorial Release 4.0

196 Index

mouse
states, 48

MOVE_REGION, 31
MOVECURSOR, 58, 59

N
NOTOBSCURED, 42, 43, 193
NUMLOCKDOWN, 37
NUMLOCKON, 36

O
object-oriented programming, 181
objects, 182

P
Panel window.
PanelType, 33
PCX, 88, 147, 148
Picklist, 143, 144
Pixmap, 104, 130

blocking, 130, 131, 132, 133
boundary, 132
Button and, 103
Buttons, 99
colors, 130, 131, 132
compared to gadget graphproc, 97
creating, 131
image, 130, 131
memory and, 131
reading, 131, 132
system colors, 132
writing, 133

Pixmaps
blocking and, 71

PixmapType, 103, 104, 130, 131, 132
PolygonType, 19
PostScript, 148
PrintScreen, 47, 49

R
radio buttons. see Checkbox Group
RectType, 19, 21, 24, 27, 33, 47, 49, 50, 73, 74, 75, 76, 77, 78, 93,

97, 102, 106, 108, 110, 111, 112, 113, 115, 120, 123, 126, 127,
128, 144, 148, 187

RIGHT, 33, 34
RIGHTBUTTONACTIVE, 74
RIGHTSHIFTDOWN, 36
Rotatelist, 127

boundary, 128
callback function, 127, 128, 129
creating, 127
list, 127, 128
parent window, 128
selection, 128, 129
text alignment, 127, 128

RotatelistType, 127, 128
rubber-band line, 190

S
save-under, 10
Scrollbar

callback function, 115, 116
compared to slider, 115
slider, 116
thumbbar size, 115
unit button, 115

ScrollbarType, 115
SCROLLOCKDOWN, 37
SCROLLOCKON, 36
SCULPTED, 70, 96
SCULPTED, 70
SenderType, 62
Slider, 110, 111, 112, 143

callback function, 112, 113, 114
channel, 110, 112
data, 112, 114
Textbox and, 125, 126
thumbbar, 110, 111, 112

SLIDERDONESTATE, 115
SLIDERJUMPDOWNSTATE, 111
SLIDERJUMPUPSTATE, 111
SLIDERTHUMBDONESTATE, 111
SLIDERTHUMBSTATE, 111
SliderType, 112, 113, 114, 115, 117, 125
SM_ActivatePalette, 85
SM_AddCheckbox, 108
SM_AddMenuItem, 26, 27, 52, 53, 187
SM_AttachGadget, 91, 132
SM_BringToFront, 29
SM_BuildTextList, 125
SM_CloseAllWindows, 20, 34
SM_CloseWindow, 20, 33, 72
SM_CopyPixmap, 133
SM_CreateBorder, 136
SM_CreateButton, 102
SM_CreateCheckbox, 106
SM_CreateCheckboxGroup, 108
SM_CreateColor, 76, 77, 78, 85, 86
SM_CreateEditstring, 123
SM_CreateGraphState, 69
SM_CreateHotregion, 141
SM_CreateIcon, 65, 66
SM_CreateLabel, 33, 97, 113
SM_CreateMenu, 26, 27, 52, 53, 187
SM_CreatePanel, 33, 34
SM_CreatePixmap, 131, 132
SM_CreateRotatelist, 127, 128
SM_CreateScrollbar, 115
SM_CreateSlider, 111, 112, 113
SM_CreateStringlist, 120
SM_CreateTextbox, 126
SM_CreateWindowPalette, 76, 85
SM_CurrentWindow, 30
SM_DeactivateButton, 102
SM_DefineCursor, 59
SM_DestroyBorder, 137
SM_DestroyButton, 102
SM_DestroyCheckbox, 106
SM_DestroyCheckboxGroup, 108
SM_DestroyEditstring, 124
SM_DestroyHotregion, 141
SM_DestroyLabel, 97

The TWS Window System Reference and Tutorial Release 4.0

197 Index

SM_DestroyMenu, 52
SM_DestroyPixmap, 133
SM_DestroySlider, 112
SM_DestroyStringlist, 121
SM_DestroyTextbox, 126
SM_DrawAppTitle, 28
SM_DrawContent, 29
SM_EraseContent, 29, 72
SM_EraseLabel, 97
SM_Exit, 20, 21, 183, 186, 188
SM_FreeWindow, 30, 92
SM_GadgetToWindow, 30, 92, 97, 99
SM_GetBorderColor, 137
SM_GetBorderLabel, 137
SM_GetBorderPosition, 137
SM_GetBorderRect, 138
SM_GetBorderStyle, 137
SM_GetBorderThick, 137
SM_GetBorderType, 137
SM_GetButtonActive, 103
SM_GetButtonColor, 103
SM_GetButtonData, 103, 192
SM_GetButtonIsdefault, 103
SM_GetButtonLabel, 103, 191
SM_GetButtonLabelcolor, 103
SM_GetButtonPixmap, 103
SM_GetCheckboxData, 106
SM_GetCheckboxLabel, 106
SM_GetCheckboxSelected, 108
SM_GetCheckboxState, 106
SM_GetCheckboxType, 106
SM_GetClosestColor, 85
SM_GetColorScheme, 24
SM_GetContentColor, 24, 27
SM_GetContentDepth, 24
SM_GetContentRect, 24
SM_GetContentWidth, 24
SM_GetCurrentCursor, 59
SM_GetCurrentFont, 55
SM_GetCurrentFontDescent, 55
SM_GetCurrentFontHeight, 55
SM_GetDefaultBorderWidth, 24
SM_GetDefaultMenubarDepth, 24
SM_GetDefaultTextColor, 24
SM_GetDefaultTitlebarDepth, 24
SM_GetDisplayDepth, 24
SM_GetDisplayWidth, 25
SM_GetEditstringActive, 124
SM_GetEditstringCursorpos, 124
SM_GetEditstringString, 124
SM_GetEventButtons, 48
SM_GetEventCursor, 48
SM_GetEventKey, 48
SM_GetEventRegion, 48
SM_GetEventState, 48
SM_GetEventTime, 48
SM_GetEventType, 48
SM_GetEventWinevent, 48
SM_GetFilename, 145
SM_GetFontBuf, 55
SM_GetFontHeight, 56
SM_GetGadgetBound, 93
SM_GetGadgetFont, 56
SM_GetGadgetSuperclass, 93, 132
SM_GetGadgetWindow, 94
SM_GetGraphState, 25

SM_GetHotregionData, 141
SM_GetHotregionNpts, 141
SM_GetHotregionPts, 141
SM_GetIconFont, 56
SM_GetIconPixmap, 66
SM_GetLabelBoldflag, 97
SM_GetLabelBoxflag, 97
SM_GetLabelItalflag, 98
SM_GetLabelString, 98
SM_GetMenuActive, 52
SM_GetMenuLabel, 52
SM_GetMessage, 63
SM_GetMessageData, 63
SM_GetMessageDestination, 63
SM_GetMessageFor, 63
SM_GetMessageSender, 63
SM_GetMessageType, 63
SM_GetMouse, 48, 189, 190
SM_GetNextEvent, 31, 32, 35, 48, 183
SM_GetPixmapBlocking, 132
SM_GetPixmapDepth, 133
SM_GetPixmapPixel, 133
SM_GetPixmapWidth, 133
SM_GetRotatelistSelected, 128
SM_GetRotatelistString, 128
SM_GetScrollbarData, 116
SM_GetScrollbarMax, 116
SM_GetScrollbarMin, 116
SM_GetScrollbarPosition, 116
SM_GetSliderData, 112, 114
SM_GetSliderMax, 112
SM_GetSliderMin, 112
SM_GetSliderPosition, 112, 114
SM_GetStringlistNDisplay, 121
SM_GetStringlistSelection, 121
SM_GetStringlistSelectString, 121
SM_GetSystemColor, 86, 131
SM_GetSystemFont, 25, 56
SM_GetSystemFontDescent, 56
SM_GetSystemFontHeight, 25, 56, 113
SM_GetSystemPalette, 86
SM_GetSystemTime, 48
SM_GetTextColor, 25
SM_GetTitleFont, 56
SM_GetTitleFontHeight, 56
SM_GetUserData, 25
SM_GetWindowColor, 76, 86
SM_GetWindowTitle, 26
SM_HotregionMove, 141
SM_Init, 20, 21, 22, 33, 183, 184
SM_InitBackgroundProcedures, 48
SM_InitBackgroundProcs, 193
SM_InitColor, 76, 77, 78, 85, 86
SM_InitMessage, 63
SM_IsColorEqual, 86
SM_IsFocus, 30
SM_IsMaximized, 30
SM_IsMinimized, 30
SM_LockWindow, 30, 31
SM_ModifySystemColor, 86
SM_ModifyWindowColor, 86
SM_MoveIcon, 66
SM_MovePixmap, 132
SM_MoveWindow, 29, 33
SM_nApplicationColors, 86, 87
SM_nColorBits, 86

The TWS Window System Reference and Tutorial Release 4.0

198 Index

SM_nDisplayBits, 30
SM_nDisplayPlanes, 30
SM_NewWindow, 20, 21, 22, 26, 30, 66, 187, 188
SM_nSystemColors, 86
SM_nWindowColors, 87
SM_OpenApplication, 20, 22, 29, 33, 183, 184, 187
SM_OpenWindow, 20, 22, 29, 30, 187, 188
SM_Picklist, 144
SM_PostMessage, 62, 63, 64
SM_ProcessEvent, 27, 35, 42, 48, 49, 183, 186, 190
SM_PtCanvasToDevice, 147
SM_PtContentToCanvas, 147
SM_PtContentToDevice, 147
SM_PtDeviceToCanvas, 147
SM_PtDeviceToContent, 147
SM_ReadPixmap, 66, 131, 132
SM_RedrawStringlist, 121
SM_RedrawWindow, 29
SM_RefreshGadgets, 29
SM_RegisterBackgroundProc, 193
SM_RegisterBackgroundProcedure, 42, 49
SM_RegisterEventHandler, 42, 43
SM_RemoveBackgroundProcedure, 49
SM_RemoveCheckbox, 109
SM_ResizeWindow, 29, 33
SM_SaveAsPCX, 147
SM_SaveAsPostscript, 148
SM_SaveContent, 30
SM_SaveScreenAsPCX, 148
SM_SaveWindowAsPCX, 147
SM_SetApplicationMenu, 26
SM_SetBorderLabel, 138
SM_SetBorderPosition, 138
SM_SetBorderRectangle, 138
SM_SetBorderThick, 138
SM_SetButtonActive, 103
SM_SetButtonColor, 103
SM_SetButtonData, 103
SM_SetButtonGraphproc, 99, 103
SM_SetButtonIsdefault, 100, 103
SM_SetButtonLabel, 103
SM_SetButtonPixmap, 99, 104
SM_SetButtonProc, 104
SM_SetButtonRect, 104
SM_SetCheckboxData, 106
SM_SetCheckboxLabel, 106
SM_SetCheckboxProc, 107
SM_SetCheckboxSelected, 109
SM_SetCheckboxState, 107
SM_SetCheckboxType, 107
SM_SetCloseProc, 26, 193
SM_SetContentColor, 27
SM_SetContentRect, 27, 28, 29, 33
SM_SetCursor, 59
SM_SetDrawProc, 27
SM_SetEditstringActive, 124
SM_SetEditstringCursorpos, 124
SM_SetEditstringString, 124
SM_SetFont, 57
SM_SetGadgetFont, 56
SM_SetGadgetFontSize, 56
SM_SetIconFont, 56
SM_SetIconPixmap, 66
SM_SetLabelBoldflag, 98
SM_SetLabelBoxflag, 98
SM_SetLabelGraphproc, 98

SM_SetLabelItalflag, 98
SM_SetLabelSculptType, 98
SM_SetLabelString, 98, 114, 192
SM_SetMenu, 27
SM_SetMenuLabel, 52
SM_SetMenuProc, 52
SM_SetPixmapBlocking, 132
SM_SetPixmapPixel, 131, 133
SM_SetPrintscreenProc, 47, 49, 147, 148
SM_SetRedrawFlag, 27
SM_SetRedrawProc, 28
SM_SetResizeProc, 28, 193
SM_SetRotatelistList, 128
SM_SetRotatelistSelected, 129
SM_SetScrollbarChannel, 116
SM_SetScrollbarData, 116
SM_SetScrollbarMinMax, 116
SM_SetScrollbarPosition, 116
SM_SetScrollbarProc, 116
SM_SetScrollbarScale, 116
SM_SetSliderChannel, 112
SM_SetSliderData, 112
SM_SetSliderMinMax, 112
SM_SetSliderPosition, 112
SM_SetSliderScale, 112
SM_SetStringlistList, 121
SM_SetStringlistSelection, 121
SM_SetSystemFont, 56
SM_SetTextboxRect, 126
SM_SetTitleFont, 57
SM_SetUserData, 28
SM_SetWindow, 28, 33
SM_SetWindowColor, 76, 87, 88
SM_SetWindowMenu, 33, 53
SM_SetWindowProc, 28, 188
SM_SetWindowTitle, 26, 28, 29
SM_StringWidth, 30, 33
SM_TextboxLineDown, 126
SM_TextboxLineUp, 126
SM_TextboxPageDown, 126
SM_TextboxPageUp, 126
SM_TimeOfDay, 48, 49
SM_UngroupCheckboxGroup, 109
SM_UnlockWindow, 30, 31
SM_WindowExists, 31
SM_WindowRegion, 31, 32
SM_WorkspaceWindow, 32
SM_WritePixmap, 132, 133
SM_YesNoCancelDialog, 146
SM_YesNoDialog, 143, 144
SMAND, 78
SMBLACK, 84
SMCBOXBUTTON, 105
SMCBOXOVAL, 105
SMCBOXSQUARE, 105
SMCLOSESTCOLOR, 87
SMCLOSESTCOLOR, 87
SMCOOL, 24
SMDARKGRAY, 84
SMDEFAULT, 70, 74, 87
SMDEFAULT, 105
smevent.h, 48, 183, 188
SMFLAGDEFAULT, 87
smgraph.h, 71, 78
SMLIGHTGRAY, 84
smmenu.h, 51, 187

The TWS Window System Reference and Tutorial Release 4.0

199 Index

SMNAND, 78
SMNOR, 78
SMNOSHARE, 87
SMNREP, 78
SMNXOR, 78
SMOR, 78
SMREP, 78
SMSHARE, 87
SMSHARE, 87
smslider.h, 111, 112, 116
SMSLIDERTHUMBSTATE, 111
smtypes.h, 31, 70, 96, 97, 106, 127, 183, 188
SMWARM, 24
smwindow.h, 19, 183, 188
SMXOR, 78
Software License Agreement, 1
Stringlist, 117, 120, 121, 143, 144

boundary, 120
callback function, 118, 120
columns, 118, 120
create, 120
data, 118, 121
destroy, 121
drawing, 121
list, 120, 121
parent window, 120
scrolling, 118, 121
selection, 118, 121

StringlistType, 117, 118, 120, 121
submenu, 187. See also menu, submenu
SUBMENU_ITEM, 51, 52, 187
SysDevice, 18
SYSREQDOWN, 37
SystemFont, 17

T
Textbox

boundary, 126
callback function, 125, 126
create, 126
destroy, 126
fonts, 126
parent window, 126
word wrap, 126

TextboxType, 125, 126
TextFont, 17
TextlistType, 125
title

application, 8
title bar, 8, 9
TitleFont, 17
Triseract, 192
truecolor, 30, 87. see color:truecolor
Tutorial, 181
TWS.CFG, 184
twsBORDERBEVEL, 135
twsBORDERBOX, 135
twsBORDERCENTER, 136
twsBORDERFLAT, 135
twsBORDERHLINE, 135
twsBORDERLEFT, 136
twsBORDERLRIDGE, 136
twsBORDERRIDGE, 136
twsBORDERRIGHT, 136

twsBORDERSCULPT, 135
twsBORDERVLINE, 135
TWSCalc, 190, 191, 192
TWSCONFIG, 16, 17
TXTBOLD, 31
TXTITALIC, 31
TXTNORMAL, 31
TXTPROPORTIONAL, 31
TXTSTRIKEOUT, 31
TXTUNDERLINE, 31

U
ULRESIZECURSOR, 58, 59
UP, 33, 34
UPLEFT, 31
UPRIGHT, 31
URRESIZECURSOR, 58, 59
USERCURSOR, 58
UserDataType, 62

V
VERTICAL, 111, 113, 116
VERTICAL (Slider type), 112
VGA, 30, 81, 86, 87
virtual coordinates, 4, 10, 69, 74, 77, 96, 99, 102, 192

W
window

application, 8
boundary, 24
callback function, 188, 190
close, 9, 10
close event, 16, 40
close procedure, 27
content color, 27
content region, 9, 24, 27, 68, 69
coordinate system, 10
create, 21, 28, 40
dialog, 8, 21, 192
document, 9, 21, 188
draw event, 15
draw procedure, 27, 29
focus, 8, 10, 16, 28, 29, 30, 85, 86, 97, 100, 103, 104, 105, 107,

112, 121, 122, 124, 126, 188, 189, 193
focus procedure, 28
get focus event, 16
initialization, 16, 20
locking, 30, 31
lose focus event, 16
maximize, 9
menu, 9, 24
minimize, 9
minimized, 30
moving, 8, 29, 40
panel, 9, 32
redraw event, 16, 28
redraw procedure, 28, 29
resize event, 16, 40
resize handles, 9
resize procedure, 28
simple, 9
stack, 9

The TWS Window System Reference and Tutorial Release 4.0

200 Index

title, 26, 28
title bar, 8, 9, 24
user data, 25, 28, 62
window events, 15
window management

callback procedures, 15
window regions, 31
window stack, 9, 16, 30, 31, 32, 92

window
dialog, 9
document, 9
stack, 9

window manager events, 185

WINDOW_REGION, 31
WindowType, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 42,

47, 48, 49, 53, 72, 73, 74, 75, 76, 77, 78, 79, 85, 86, 87, 91, 92,
94, 97, 102, 106, 108, 111, 113, 115, 120, 123, 126, 127, 128,
147, 187, 188

workspace, 8, 12, 20, 32, 50, 187
color, 105

WORKSPACE_REGION, 31

X
XOR, 78, 189

